本论文围绕2009年电子设计竞赛A题,探讨了光伏并网发电系统的模拟实现。通过研究光伏电池特性及并网控制策略,提出了一套完整的硬件与软件解决方案,为可再生能源利用提供了新的思路和技术支持。
这篇论文主要探讨了2009年电子设计竞赛A题——光伏并网发电模拟装置的设计方案。该装置采用了当前流行的SPWM(脉宽调制)技术,并通过两片低端AVR单片机构建的主从控制系统来实现这一目标。系统不仅能够高效地进行直流至交流转换,还利用MPPT(最大功率点跟踪)算法精确追踪最大功率点,从而优化能量输出效率。此外,装置具备频率和相位同步功能,并配备了过流、欠压及过热三种保护措施以确保系统的稳定运行。
在方案选择过程中,最初考虑使用价格昂贵且性价比低的频率调节芯片SA8382或SA8281来直接生成SPWM波形。随后研究了利用NE555产生的三角波与单片机通过DA转换产生的正弦波,在比较器TLV3501的作用下合成SPWM波,尽管这种方案成本较低,但控制难度较大且实现复杂度高。最终论文选择了使用AVR单片机megal6的定时器和比较匹配机制来生成高频、高精度的SPWM波形,并通过数字控制系统简化了干扰因素。为了兼顾控制需求与SPWM信号产生,采用了两片megal6构建主从结构。
在MPPT算法的应用上,一种方法是利用软件调整SPWM调制比以改变负载电压和电流来实现转换器分压目标;另一种则是采用TL494为核心的DC-DC升压模块,在直流至交流变换前进行硬件自动反馈调节从而达到稳压效果。后者减少了单片机的工作负担并提高了系统的稳定性。
对于同频同步的测量控制,一种方法是通过AD连续采样参考波形和反馈信号来计算频率并通过单片机调整SPWM以实现波形同步;另一种则是将参考信号转换为方波后由单片机进行相位调节。前者对ADC性能有较高要求且需要处理大量数据,而后者则简化了实施过程。
论文中涉及的主要技术包括:
1. SPWM调制:通过改变脉冲宽度来控制输出电压的平均值以模拟交流电。
2. AVR单片机的应用:在光伏并网发电装置中的主从控制系统设计及SPWM波形生成。
3. MPPT算法:用于追踪太阳能电池的最大功率点,提高能量转换效率。
4. 系统保护机制:包括过流、欠压和过热保护以确保设备的安全稳定运行。
5. 频率与相位同步控制:保证并网发电模拟装置能够与电网保持一致。
论文还详细比较了不同方案的性价比、实现难度及系统稳定性等因素,为电子设计竞赛提供了有价值的参考。