Advertisement

NSGA-II算法的多目标优化实例及MATLAB程序.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本PDF文档详细介绍了基于NSGA-II算法的多目标优化方法,并提供了具体的实例分析和MATLAB编程实现。 目前存在许多多目标优化算法,Kalyanmoy Deb提出的带精英策略的快速非支配排序遗传算法(NSGA-II)是其中应用最广泛且最为成功的一种。本段落采用的是MATLAB自带的函数gamultiobj,该函数基于对NSGA-II进行改进而来的多目标优化算法。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • NSGA-IIMATLAB.pdf
    优质
    本PDF文档详细介绍了基于NSGA-II算法的多目标优化方法,并提供了具体的实例分析和MATLAB编程实现。 目前存在许多多目标优化算法,Kalyanmoy Deb提出的带精英策略的快速非支配排序遗传算法(NSGA-II)是其中应用最广泛且最为成功的一种。本段落采用的是MATLAB自带的函数gamultiobj,该函数基于对NSGA-II进行改进而来的多目标优化算法。
  • NSGA-II
    优质
    NSGA-II是一种高效的多目标进化算法,用于寻找复杂问题中的多个最优解。它通过非支配排序和拥挤度距离等机制,在保持解集多样性和收敛性之间取得平衡。 NSGA-II(非支配排序遗传算法II)是一种著名的多目标优化算法。该程序实现了这一算法。相较于最初的NSGA,NSGA-II进行了多项改进。最初的NSGA是由N. Srinivas 和 K. Deb在1995年提出,并发表于一篇名为《Multiobjective function optimization using nondominated sorting genetic algorithms》的论文中。此算法在快速找到Pareto前沿和保持种群多样性方面表现良好,且修正了针对二进制编码的64位Linux系统中的一个错误。
  • 基于MATLAB(NSGA-II)
    优质
    本研究采用MATLAB平台实现NSGA-II算法,旨在解决复杂工程问题中的多目标优化需求。通过模拟进化过程,有效寻找帕累托最优解集。 本资源适用于多个目标函数及变量的应用场景,例如三目标三变量的情况。
  • 基于NSGA-IIMatlab
    优质
    本项目采用Matlab编程实现了基于NSGA-II(非支配排序遗传算法二代)的多目标优化解决方案。该算法广泛应用于工程设计、经济管理等领域,以有效寻找到问题的最佳解集。 上传的算法程序为非支配排序遗传算法NSGA-II,包含主函数、初始变量函数、竞标选择、遗传操作、非支配排序程序、替换程序以及目标函数程序。下载后只需编写自己的目标函数并调整相应的输入变量参数即可使用该算法程序。
  • NSGA-IIMatlab
    优质
    简介:NSGA-II是一种先进的多目标优化遗传算法。本项目深入讲解并实践了该算法在解决复杂工程问题中的应用,并提供详细的Matlab代码实现,以帮助用户快速掌握和运用这一高效优化工具。 NSGA-2是使用最广泛的多目标遗传算法之一。
  • NSGA-II 遗传
    优质
    简介:NSGA-II是一种用于解决多目标优化问题的高效遗传算法,通过非支配排序和拥挤距离机制,有效寻找帕累托前沿解集。 NSGA-II多目标遗传算法的MATLAB实现已经过实测可以运行,可供参考。
  • NSGA-II MATLAB代码 - 遗传(nsga2)
    优质
    简介:NSGA-II MATLAB代码实现了一种高效的多目标优化遗传算法。该工具箱适用于解决复杂问题中的多个冲突目标优化需求,提供快速、可靠的结果。 NSGA-II算法的MATLAB代码基于一种多目标进化算法(MOEA),旨在解决开源软件发布时间与管理的问题。NSGA是一种流行的非支配排序遗传算法,用于处理多个优化目标问题。原始的NSGA-II代码可在函数nsga_2(pop, gen)中找到;此函数接受两个输入参数:种群大小和迭代代数数量。为了适应特定需求,用户可以通过修改evaluate_objective.m文件来自定义目标函数(涉及多决策变量)。 传统上,在解决软件发布时间问题时,人们通常将复杂的多目标优化空间简化为单一的目标优化问题。然而,这种简化的代价是丢失了对所有相关因素的全面考虑。我们采用基于非支配排序遗传算法来处理开源软件发布的时间点选择问题,并且原因如下:首先,我们需要同时实现最高可靠性和最低成本;其次,进化算法能够保证解的质量。 与使用单一遗传算法寻找单个最优解决方案不同的是,NSGA-II可以找到一组帕累托最优解。这些最佳方案的特点是在所有目标上没有更好的替代品——即在某一特定目标上的改进必然会导致其他一个或多个目标的退步。我们关注的目标包括:1.可靠性;2.成本;3.测试资源使用量。 如何执行该算法?通过调用nsga_2(pop, gen)函数并提供所需的种群大小和迭代代数即可开始优化过程。
  • 基于白鲸NSGA-II
    优质
    本研究结合了白鲸优化算法和NSGA-II,提出了一种新的多目标优化方法,旨在提高复杂问题求解效率及解的质量。 本资源使用Matlab实现多目标白鲸优化算法,能够解决无约束条件和有约束条件的多目标优化问题。
  • 基于MATLAB(DE、MMODE、MODEA、NSGA-II
    优质
    本研究探讨了在MATLAB环境下四种主流多目标优化演化算法(差分进化(DE)、混合多目标差分演化(MMODE)、多目标差分演化算法(MODEA)及非支配排序遗传算法(NSGA-II))的实现与比较,为复杂工程问题提供高效解决方案。 本段落介绍了几种用于解决多目标优化问题的演化算法:差分进化(DE)、混合多目标差分进化(MMODE)、基于分解的多目标差分进化(MODEA)以及非支配排序遗传算法II(NSGA-II)。此外,还涉及了这些算法的具体实现,并包括测试集和性能度量指标。
  • NSGA-II入门详解PPT
    优质
    本PPT深入浅出地介绍了NSGA-II(快速非支配排序遗传)多目标优化算法的基本概念、工作原理及应用实例,适合初学者掌握其核心思想与实践方法。 非支配排序、拥挤度计算以及Pareto前沿是NSGA-II算法的重要组成部分。与之相比,早期的NSGA算法存在一些缺陷:时间复杂度较高(O(MN^3)),其中M表示目标函数的数量,而N代表种群大小;缺乏精英保留策略,并且需要人为设定共享参数σshare。 为改进这些问题,NSGA-II引入了快速非支配排序法以将时间复杂度优化至O(MN^2),同时采用了拥挤距离来替代共享函数算法从而保持种群多样性。此外,该版本还首次加入了精英保留策略。 在解释这些概念时可以举一个例子:假设你有两个目标——花费和旅行时间,并且这两个因素都越低越好。例如,动车A(费用为270元、时间为7小时),普快B(费用120元、时间10小时)以及飞机C(费用240元、时间2小时)。根据这个例子可以知道,方案C支配着方案A;而由于B和C在两个目标上没有一方全面优于另一方的情况存在,因此它们之间是非支配关系。 非支配排序的目标是获得一组Pareto最优解集。