Advertisement

一维河流水质模型的隐式求解Matlab代码_浓度差分_水质模型_隐式差分格式_有限浓度变化

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供了一种针对一维河流水质模拟的隐式数值方法及其实现,采用MATLAB编程实现。该方法基于隐式差分格式,适用于计算水中污染物浓度的变化情况,特别适合处理低扩散速率下的有限浓度变化问题。 有限差分隐格式求解一维河流水质模型,分析BOD沿程浓度变化。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Matlab____
    优质
    本资源提供了一种针对一维河流水质模拟的隐式数值方法及其实现,采用MATLAB编程实现。该方法基于隐式差分格式,适用于计算水中污染物浓度的变化情况,特别适合处理低扩散速率下的有限浓度变化问题。 有限差分隐格式求解一维河流水质模型,分析BOD沿程浓度变化。
  • 动态
    优质
    本研究构建了一个描述盐水溶液中盐分随时间动态变化的数学模型,探讨了不同条件下盐水浓度的变化规律。 研究盐水浓度的动态变化是数学建模中的一个重要课题。通过建立合适的数学模型,可以深入理解并预测不同条件下盐水浓度的变化规律。这不仅有助于理论上的探讨,还能应用于实际问题解决中,如化学工程、海洋学等领域。
  • 基于MATLAB交替方向P-R抛物方程
    优质
    本研究采用MATLAB平台,提出了一种新的交替隐式方向P-R差分格式来高效求解偏微分方程中的抛物型方程问题,确保了计算的稳定性和准确性。 【达摩老生出品,必属精品】资源名:解抛物型方程_交替隐方向P-R差分格式_matlab 资源类型:matlab项目全套源码 源码说明:全部项目源码都是经过测试校正后百分百成功运行的。如果您下载后不能运行,请联系我进行指导或者更换。 适合人群:新手及有一定经验的开发人员
  • 关于抛物方程种加权法及MATLAB
    优质
    本文提出了一种针对抛物型偏微分方程的新型加权隐式差分方法,并提供了相应的MATLAB实现代码,以提高数值解的精度和稳定性。 本段落介绍了一种求解抛物方程的差分格式——加权隐式方法,并附有相应的MATLAB代码。此外,还提供了包含结果图及思路分析的Word文件,以便读者结合代码进行深入理解与学习。
  • 双曲问题加权方法
    优质
    本研究探讨了一种针对双曲型偏微分方程的新型加权隐式差分算法,有效提升数值解的稳定性和精度。 双曲问题差分格式的加权隐式格式求解方法通过利用边界条件和初值条件来计算第一级解,并且根据递推方程进一步求得任意级别的解。文档中包含思路分析以及结果图,建议配合提供的MATLAB代码一起阅读以更好地理解整个过程。
  • MATLAB_RAR_热方程法_热传导问题_方法
    优质
    本资源提供了使用MATLAB解决一维热方程的隐式解法代码及文档,适用于研究与工程中的一维热传导问题求解。采用稳定的隐式差分方法进行数值模拟,适合初学者和科研人员参考学习。 标题中的“matlab.rar_matlab隐式_一维热方程_热传导 matlab_热传导 隐式_隐式差分”表明这是一个关于使用MATLAB解决一维热传导方程的实例,其中采用了隐式差分方法。一维热传导方程是描述物体内部热量传递的经典数学模型,而隐式差分法是一种数值解法,用于近似求解偏微分方程。 在描述中提到的一维热传导方程的MATLAB计算使用了隐式差分格式和追赶法进行计算。这意味着这个项目或教程将详细展示如何用MATLAB编程来解决这个问题。与显式差分相比,隐式差分方法具有更好的稳定性,特别是在处理大时间步长和高导热系数的情况时更为适用。追赶法是一种迭代技术,在这种方法中通过不断修正节点上的温度值直至达到稳定状态。 一维热传导方程通常表达为: \[ \frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2} + q(x,t) \] 这里,\(u(x,t)\) 是位置 \(x\) 和时间 \(t\) 的温度值,\(k\) 代表热导率,而 \(q(x,t)\) 表示热源项。 隐式差分方法的基本思路是将偏微分方程离散化为一组代数方程,并通过迭代求解这些方程。在MATLAB中实现时,这通常涉及到矩阵操作和使用线性代数包中的函数来解决线性系统问题。 “嘉兴模拟-zhg”可能指的是具体的模拟案例或代码文件,可能是用于运行实际热传导模拟的MATLAB脚本或M文件。用户可以通过查看这些提供的具体代码了解如何设置网格、定义边界条件以及迭代求解方法。 这个压缩包包含了一个使用MATLAB隐式差分法来解决一维热传导问题的例子。通过分析和执行其中的代码,学习者可以理解隐式差分方法的基本原理,并学会在MATLAB环境中实现数值解法的方法,这对于理解和掌握热传导方程的数值求解以及提高MATLAB编程技能都非常有帮助。
  • Matlab 泊松方程及 Python Drift-Diffusion
    优质
    本资源提供MATLAB代码用于求解泊松方程,并包含使用Python实现的一维Drift-Diffusion模型的有限差分方法。适合科研与学习用途。 这段文字描述了一维模型的Python代码实现,该模型通过有限差分法求解半导体中的泊松漂移扩散方程,并模拟了光照条件下的太阳能电池行为。此模型可以被调整以适应不同的边界条件、重组率以及生成率的变化。 为了确保数值稳定性,在连续性方程中采用了Scharfetter-Gummel离散化方法,同时结合新旧解的线性混合来解决泊松漂移扩散方程组。使用Gummel迭代法进行自洽求解,并通过Numba库中的@jit装饰器加速代码执行效率。 性能测试结果表明,在未启用Numba时,Python代码运行时间为469.7秒;而开启后则缩短为73.7秒,显示出显著的提速效果。此外还提到了C++和Matlab版本实现,并提供了不同编程语言之间的性能比较:对于网格尺寸dx=0.25nm、系统大小300nm的一维代码而言: - Python: 69.8 秒 - Matlab: 40秒 - C++ : 3.7秒 结论是,尽管C++版本的程序执行速度最快,但可能具有较低的可读性。
  • 基于MATLAB-Cavity-NS:用于腔体动问题Navier-Stokes方程器(含数阶方法)
    优质
    本项目提供了一个使用MATLAB实现的二维Navier-Stokes方程求解器,专门针对腔体内流体动力学问题。采用隐式格式和有限差分方法,并结合分数阶导数技术进行精确计算。代码适用于研究与教学用途。 隐式格式的MATLAB代码用于求解二维Navier-Stokes方程(2D导航贴纸有限差分)。此外,还有一个使用Fortran-GNU-Fortran编译器以及压缩稀疏列(CSC)存储功能的2D Navier-Stokes有限差分求解器和矩阵求解器。要安装该程序,请在OSX或GNU-Linux系统上执行以下步骤:克隆GitHub仓库,修改Makefile中的相关配置行,并使用make命令编译代码。 具体操作如下: 1. 克隆项目文件。 2. 在Makefile中更改与编译器和用户特定配置相关的行(建议使用GNU-Fortran)。 3. 通过键入`make clean; make`进行编译,生成的可执行文件将位于./bin/目录下。 为了运行求解器,请修改./nsconf.nml文件中的设置。此文件中详细描述了可以更改的输入变量。配置完成后即可使用该程序。
  • 基于MATLAB-Cavity-NS:二Navier-Stokes方程器应用于腔体问题,采用数阶方法...
    优质
    本项目提供一个基于隐式时间积分和有限差分空间离散化的MATLAB实现,用于求解二维腔内流动的Navier-Stokes方程,结合了先进的分数阶导数技术。 隐式格式的MATLAB代码用于解决二维导航贴纸中的Navier-Stokes方程,并提供了一个FORTRAN版本的2D Navier-Stokes有限差分求解器及矩阵求解器,该版本使用压缩稀疏列(CSC)存储方式和为利用这种存储而开发的一组工具。在OSX和GNU-Linux系统上安装时,请先克隆代码仓库,然后运行`make clean; make`命令进行编译。 要开始使用这个求解器,您需要一个Fortran编译器,推荐使用GNU-Fortran。根据个人需求,在Makefile中调整与编译器及用户特定配置相关的行(已知该版本能够完美兼容Gfortran)。完成对Makefile的修改后,通过运行`make clean`和`make`命令来编译求解器。 最终生成的可执行文件会位于./bin/目录下。为了更改输入变量,请编辑./nsconf.nml配置文件中的相应选项。在完成了方案设置并编译了求解器之后,您就可以开始使用它进行计算工作了。