Advertisement

DFP拟牛顿法:利用DFP算法解决优化问题-MATLAB实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了如何使用MATLAB编程语言来实施DFP拟牛顿法,这是一种用于求解非线性最小化问题的有效算法。通过详细阐述该方法的具体步骤和代码示例,读者能够更好地理解和应用这一重要的数值优化技术。 脚本 quasi_newton_dfp.m 使用 DFP 拟牛顿法优化通用多变量实值函数。在迭代过程中,如果无法获得最佳步长,则将固定步长设为 1。对于该理论,可以参考任何关于优化技术的好书。此外,该脚本还可以用于检查给定函数是凸函数还是凹函数,从而实现全局优化。当函数的维数为 2 并且是凸函数时,它作为经典的牛顿方法工作,并能够一步收敛。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DFPDFP-MATLAB
    优质
    本文介绍了如何使用MATLAB编程语言来实施DFP拟牛顿法,这是一种用于求解非线性最小化问题的有效算法。通过详细阐述该方法的具体步骤和代码示例,读者能够更好地理解和应用这一重要的数值优化技术。 脚本 quasi_newton_dfp.m 使用 DFP 拟牛顿法优化通用多变量实值函数。在迭代过程中,如果无法获得最佳步长,则将固定步长设为 1。对于该理论,可以参考任何关于优化技术的好书。此外,该脚本还可以用于检查给定函数是凸函数还是凹函数,从而实现全局优化。当函数的维数为 2 并且是凸函数时,它作为经典的牛顿方法工作,并能够一步收敛。
  • DFP(变尺度)CC++源码
    优质
    本项目提供一种高效的DFP(Davidon-Fletcher-Powell)算法实现,采用拟牛顿方法(又称变尺度法),用以求解非线性优化问题。代码使用C/C++编写,附带详细注释及示例,便于学习和应用。 用C++编写的拟牛顿法源程序非常实用。
  • MATLAB最小值
    优质
    本文章介绍了如何使用MATLAB软件来实现牛顿法,以解决寻找多元函数极小值的问题,并通过实例展示了该方法的具体应用。 基于MATLAB实现牛顿法求最小值的方法涉及使用该软件的数值计算能力来解决优化问题。这种方法通过迭代过程逐步逼近函数的极小点,并且在每次迭代中利用目标函数的一阶导数(梯度)和二阶导数(海森矩阵)。实现时,需要编写MATLAB代码以定义待求解的目标函数及其相应的导数信息;随后设置初始猜测值并执行算法直至满足预定收敛准则为止。
  • 改进的BFGS/DFPMATLAB(含详尽注释、目标函数及Armijo则)
    优质
    本工作介绍了改进的BFGS和DFP拟牛顿法在MATLAB中的实现,包含详细注释、具体目标函数以及Armijo线搜索准则。 这段文字描述了一个项目包含BFGS拟牛顿算法以及DFP拟牛顿算法的相关文件:一个函数文件、一个梯度文件以及求解函数文件,并且所有代码都有完整的注释。
  • BFGS.rar_BFGS _二次__BFGS_matlab
    优质
    本资源为BFGS优化方法的MATLAB实现代码,适用于二次优化问题,基于拟牛顿法原理,提供高效求解非线性最优化问题的解决方案。 拟牛顿法是一种在数值优化领域广泛使用的迭代方法,主要用于寻找无约束或有约束条件下的局部极小值问题的解。BFGS(Broyden-Fletcher-Goldfarb-Shanno)是拟牛顿法的一个具体实现方式,它以四位数学家的名字命名,在20世纪60年代由他们各自独立提出。由于其既高效又相对简单的特性,BFGS在实际应用中非常受欢迎,并且特别适用于解决大型优化问题。 BFGS的核心思想在于通过近似Hessian矩阵(目标函数的二阶导数矩阵)来模拟牛顿法的迭代过程。然而,直接计算和存储完整的Hessian矩阵对于高维问题来说可能会造成巨大的负担。因此,BFGS采用一系列正定且递推更新公式的方法,避免了直接计算整个Hessian矩阵,并大大降低了所需的计算资源。 具体而言,BFGS算法的主要步骤包括: 1. **初始近似Hessian**: 通常选择单位矩阵作为初始的Hessian近似。 2. **梯度方向**: 计算当前点处目标函数的负梯度向量,以此为搜索方向。 3. **线性搜索**: 使用适当的线性搜索算法(例如Armijo规则或Goldstein准则)找到一个合适的步长α,使得沿着该方向移动时目标函数下降最为显著且满足一定的条件。 4. **Hessian更新**: 利用前两次迭代的信息来更新近似的Hessian矩阵。BFGS的这种更新方式保证了每次得到的新矩阵都是正定的,并因此确保算法具有良好的稳定性。 5. **重复执行**: 更新当前点的位置并继续上述步骤,直至满足预设的停止条件(如达到最大允许次数、梯度足够小或目标函数值不再明显改变等)。 在MATLAB中,`fminunc`函数提供了一种内置的方法来实现BFGS优化算法。用户只需定义待求解的目标函数和可能存在的约束条件,然后该软件将自动执行相应的计算任务以寻找最优解。 另一个关键特性是二次收敛性:随着迭代次数的增加,BFGS方法能够越来越快地逼近全局最小值,并最终达到一个二次速率的增长趋势。这是因为更新后的Hessian近似会逐渐接近真实的Hessian矩阵;而对二阶可微函数而言,其极小点正是该函数在某一点处的Hessian矩阵为零的情况。 实际应用中,BFGS法常与有限差分或自动求导技术结合使用来获取目标函数的梯度信息。此外,为了处理大型稀疏问题,还发展出了基于稀疏近似的方法,例如有限内存版本的BFGS(L-BFGS),它只需存储和操作最近几次迭代的信息即可大幅减少内存需求。 综上所述,BFGS方法在数值优化领域中是一个非常有效的工具,特别适用于解决高维复杂问题。通过迭代更新Hessian矩阵近似值的方式,该算法既保持了牛顿法的快速收敛特性又避免了直接计算完整Hessian矩阵所带来的高昂成本。MATLAB提供的实现使得这种方法能够广泛应用于各种工程和科学研究场景之中。
  • MATLAB迭代非线性方程组
    优质
    本文章介绍了如何使用MATLAB编程软件来实施牛顿迭代算法以求解复杂的非线性方程组。通过详细步骤和实例解析,读者可以掌握将该方法应用于实际数学问题中的技巧与策略。 在MATLAB中实现牛顿迭代法求解非线性方程组的方法涉及编写代码来定义目标函数及其雅可比矩阵,并通过迭代过程逼近方程组的根。这种方法需要对数学原理有深刻理解,包括如何计算偏导数以及如何更新变量以逐步接近精确解。
  • 与阻尼MATLAB
    优质
    本文探讨了牛顿法和阻尼牛顿法在求解非线性方程组中的应用,并通过MATLAB编程实现了这两种算法的优化,旨在提高数值计算效率。 本段落介绍了牛顿法和阻尼牛顿法在MATLAB中的实现方法,代码由本人编写。如需使用,请自行下载相关文件,并运行run.m文件。欢迎各位讨论交流。
  • -拉格朗日约束
    优质
    本研究探讨了利用牛顿-拉格朗日方法处理具有等式和不等式约束的优化问题的有效性与实用性,为复杂系统中的资源分配和决策提供了新视角。 用牛顿-拉格朗日法求解约束优化问题: 目标函数为:min f(x) 受以下约束条件限制:h_i(x)=0, i=1,..., l. 输入参数包括: - x0: 初始点 - mu0: 乘子向量的初始值 输出结果包含: - x: 近似最优点 - mu: 相应的拉格朗日乘子 - val: 最优目标函数值 - mh: 约束函数模(即约束条件满足程度) - k: 迭代次数 设置最大迭代次数为 maxk=200;
  • 非精确光滑约束
    优质
    简介:本文提出了一种基于非精确光滑牛顿法的方法来有效求解约束优化问题。通过引入光滑技术改进算法性能,针对大规模和复杂约束条件下的优化问题提供了有效的解决方案。 本段落针对不等式约束问题提出了一种基于Kanzow光滑函数的非精确光滑牛顿法。在该方法中,我们利用了约束问题解的Karush-Kuhn-Tucker(KKT)条件及变分不等式。
  • Matlab迭代非线性方程
    优质
    本项目通过MATLAB编程实现了牛顿迭代算法,专门用于求解复杂的非线性方程。演示了该方法的有效性和准确性,并提供了源代码和应用实例。 本程序使用牛顿迭代法求解非线性方程2*(x^3)-4*(x^2)+3*x-6=0在1.5附近的根的具体实现方法。