Advertisement

四轮轮毂电机驱动车辆横摆力矩与转矩矢量分配控制的仿真研究:滑模和PID联合控制策略及力矩分配方法分析

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究针对四轮独立驱动电动汽车,采用滑模和PID联合控制策略进行横摆力矩调控,并探讨了最优转矩矢量分配算法,通过仿真验证其有效性和优越性。 本段落研究了四轮轮毂电机驱动车辆的横摆力矩与转矩矢量分配控制仿真,并探讨了滑模与PID联合控制策略及力矩分配方法。同时,还对四轮轮毂电机驱动车辆的DYC(直接横摆力矩控制)和TVC(转矩矢量分配)系统的分层控制策略进行了仿真研究。 整体采用分层控制策略:顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角误差,计算出维持车辆稳定性的期望附加横摆力矩。为了减少车速影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩及驱动力进行分配,以实现整车在高速附着路面条件下的稳定性控制。 顶层控制器采用滑模控制(SMC)和PID控制方法来计算维持车辆稳定性的期望附加横摆力矩。底层控制器则使用平均分配或基于特殊目标函数优化的定制化分配方法来进行转矩矢量的分配,以实现整车在不同行驶状态下的最优性能表现。 本段落使用的驾驶员模型是CarSim自带的预瞄模型,并采用了PID速度跟踪控制器来确保车辆的速度稳定性和一致性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 仿PID
    优质
    本研究针对四轮独立驱动电动汽车,采用滑模和PID联合控制策略进行横摆力矩调控,并探讨了最优转矩矢量分配算法,通过仿真验证其有效性和优越性。 本段落研究了四轮轮毂电机驱动车辆的横摆力矩与转矩矢量分配控制仿真,并探讨了滑模与PID联合控制策略及力矩分配方法。同时,还对四轮轮毂电机驱动车辆的DYC(直接横摆力矩控制)和TVC(转矩矢量分配)系统的分层控制策略进行了仿真研究。 整体采用分层控制策略:顶层控制器的任务是利用车辆状态信息、横摆角速度以及质心侧偏角误差,计算出维持车辆稳定性的期望附加横摆力矩。为了减少车速影响,设计了纵向速度跟踪控制器;底层控制器的任务是对顶层控制器得到的期望附加横摆力矩及驱动力进行分配,以实现整车在高速附着路面条件下的稳定性控制。 顶层控制器采用滑模控制(SMC)和PID控制方法来计算维持车辆稳定性的期望附加横摆力矩。底层控制器则使用平均分配或基于特殊目标函数优化的定制化分配方法来进行转矩矢量的分配,以实现整车在不同行驶状态下的最优性能表现。 本段落使用的驾驶员模型是CarSim自带的预瞄模型,并采用了PID速度跟踪控制器来确保车辆的速度稳定性和一致性。
  • 基于独立直接调节其应用:结LQR数学规划DYCAFS集成CarSim仿...
    优质
    本研究探讨了采用分层控制策略对四轮独立驱动汽车进行直接横摆力矩调节,通过整合LQR和数学规划技术优化扭矩分配,并在CarSim环境下模拟其与动态横摆控制系统(DYC)及主动前轮转向系统(AFS)的集成效果。 本段落探讨了直接横摆力矩分层控制器在四轮独立驱动汽车转矩分配中的应用,并结合动态稳定控制系统(DYC)与主动前轮转向系统(AFS)集成控制的研究,采用CarSim与Simulink联合模型进行仿真分析。研究的核心内容包括上层LQR和下层数学规划的使用,以及如何优化四轮独立驱动汽车的转矩分配性能。
  • 基于MATLAB Simulink布式系统仿型,包括、驾驶员型...
    优质
    本研究构建了基于MATLAB Simulink平台的分布式四轮驱动系统控制仿真模型,涵盖轮毂电机扭矩智能分配算法、拟人化驾驶行为建模以及精确的轮毂电机模拟器。 在现代汽车技术领域,分布式四轮驱动系统因其卓越的性能表现而成为研究与开发的重点方向之一。本段落将详细介绍基于Matlab Simulink环境构建的分布式四轮驱动整车控制仿真模型,该模型涵盖了多个子模块,包括但不限于:轮毂电机扭矩分配控制策略、驾驶员模拟器、轮毂电机特性分析、动力电池管理系统以及变速箱和整车动力学等。 轮毂电机扭矩分配控制策略是整个系统的核心部分。它通过考虑不同路况下的驱动力需求及各轮之间的协调配合来实现高效的功率输出与平衡的负载分布。在设计该模型时,可以根据不同的性能要求制定多种扭矩分配方案,包括基于规则的方法和利用先进算法进行优化调控(如模糊逻辑控制、自适应控制或预测性建模等)。 驾驶员模拟器则负责模仿真实驾驶行为中的各种操作动作及决策过程,比如加速、制动以及转向。它对于确保仿真结果的准确性和可靠性至关重要。 轮毂电机模型基于实际性能参数构建而成,并用于再现其运行状态;动力电池模型需详细描述电池特性(例如充放电能力、容量限制和内阻等),以保证在仿真中的准确性与真实性。 变速箱模型作为传动系统的关键部分,必须能够精准地模拟不同档位下的传动比变化及其对整车动力输出及燃油经济性的影响。而整车动力学模型则综合考虑了车辆的质量分布、空气阻力效应以及悬架系统的性能等因素,是评估其整体动态表现的重要工具。 仿真平台提供了多种预设参数配置方案,可以直接运行并生成测试结果。这些数据不仅可用于分析车辆的动力特性,还可以对其燃油经济性进行评价。此外,研究者可以根据需要调整扭矩分配策略或引入优化算法(如遗传算法、粒子群优化等),以实现最佳的性能与效率平衡。 在实际操作中,通过仿真软件界面可以灵活地对模型参数和控制方案进行修改及优化,并直接利用所得结果撰写学术论文。这为技术交流提供了有力的数据支持。 从工程分析角度来看,分布式四轮驱动系统能够显著改善车辆牵引力、操控性和通行能力,从而提升其整体性能表现。随着工业技术的发展趋势,此类系统的研发将更加依赖于先进计算工具和软件的支持;Matlab Simulink在此领域中表现出强大的应用价值和技术优势。 此次提供的仿真模型不仅包括了众多关键子系统模块及其详细参数配置说明,还附带了大量的图像资料与技术文档解析内容。这为深入理解分布式四轮驱动整车控制原理及实现细节提供了充分的资源支持。通过对此类文件的学习和研究,工程师们可以有效掌握相关设计理念和技术方法,并推动该领域的进一步创新与发展应用。
  • 基于CarSimSimulink独立(三自由度型: 纵向、)- 离散LQR
    优质
    本研究探讨了在三自由度车辆模型下,利用离散LQR控制策略优化基于CarSim和Simulink的四轮独立驱动电动汽车转矩分配控制系统,实现纵向、横向及横摆稳定性的提升。 四轮独立驱动电动汽车转矩分配控制采用CarSim与Simulink联合三自由度车辆模型(包括纵向、横向及横摆)的控制方法为离散LQR(包含连续系统的离散化方法和求解步骤)。该文档详细介绍了控制器的设计以及二自由度稳定性控制目标的推导过程。所使用的MATLAB版本为2018b,CarSim版本为2018。
  • 独立:结CarSimSimulink三自由度型离散LQR器设计详解
    优质
    本文详细介绍了一种基于CarSim与Simulink平台的四轮独立驱动电动汽车转矩分配控制策略,采用三自由度车辆模型并运用离散LQR方法优化控制性能。通过详尽的设计过程和仿真验证,展现了该控制器在提高电动车操控性和稳定性方面的有效性。 本段落详细介绍了四轮独立驱动电动汽车的转矩分配控制系统的设计与实现过程。首先阐述了三自由度车辆模型的基本概念及其纵向、横向及横摆运动的状态方程。随后,文章探讨了如何利用CarSim和Simulink进行联合仿真的具体步骤和技术要点,包括数据单位匹配以及通信设置等关键环节。 接着深入介绍了离散LQR控制器的设计方法,涵盖了状态权重矩阵Q与输入权重矩阵R的选择策略,并详细说明了将连续系统转化为离散系统的操作流程。此外,文中还讨论了轮胎负荷率分配算法和扭矩分配策略的应用场景,特别是在低附着力路面条件下的具体实施方式。 最后通过双移线工况测试验证控制器的实际效果并分享了一些调试经验和常见问题的解决方案。本段落旨在为从事汽车工程、自动驾驶技术和控制系统研发的专业人士提供有价值的参考信息,尤其是对于关注电动汽车及先进控制算法的研究者来说具有重要借鉴意义。 文中提供了丰富的MATLAB代码片段和实用技巧帮助读者更好地掌握相关理论和技术,并强调了实际项目开发过程中需要注意的关键点如参数一致性以及数据同步等问题。
  • 基于MATLAB Simulink布式系统仿型,涵盖、驾驶员
    优质
    本研究构建了基于MATLAB Simulink的分布式四驱整车控制仿真系统,包括精确的轮毂电机扭矩管理,以及细致的驾驶员行为和电动机响应模型。 基于MATLAB Simulink的分布式四轮驱动整车控制仿真模型包括了轮毂电机扭矩分配控制策略、驾驶员行为模拟、轮毂电机特性、动力电池性能、变速箱功能以及整车动力学等模块。 该模型具备以下特点: - 可进行车辆的动力性和经济性仿真,手工搭建而成,技术含量较高。 - 提供详细的仿真参数设置选项,可以直接运行并获得结果。 - 允许用户自由调整控制策略和扭矩分配系数,并可以添加扭矩优化算法。这些修改能够直接用于撰写论文。
  • (最新)关于仿评估.doc
    优质
    本文档探讨了针对电动汽车轮毂电机设计的一种新型扭矩分配算法,并通过详尽的仿真测试对其性能进行了全面评估。 轮毂电机驱动电动汽车各轮毂电机扭矩分配算法的仿真和评价.doc 文档探讨了针对采用轮毂电机驱动技术的电动汽车,在不同行驶条件下如何优化每个车轮上的电动机扭矩分配,以提高车辆性能、效率及驾驶稳定性,并通过计算机仿真对多种扭矩分配策略进行了评估。
  • 关于并仿(2005年)
    优质
    本研究针对并联混合动力汽车开展,旨在探讨其有效的控制策略,并通过仿真技术进行深入分析。报告于2005年完成。 本段落提出了一种应用逻辑门限值控制方法的策略,以同时限制发动机与电池的工作区间。通过设定特定门槛值来确保发动机在高效率范围内运行,并提供所需的扭矩输出;电动机在此过程中作为负载调节装置发挥作用。 当系统需要大力矩时,电动机会参与到驱动任务中去;而在需求小力矩的情况下,则根据电池的荷电状态(SOC)决定是让电动机单独承担驱动工作,还是让它充当发电机的角色来吸收发动机多余的功率,并对电池进行充电。这样可以将电池的SOC维持在一个合理的范围内。 基于实际工况的特点,本段落详细地描述了该控制策略的研发流程,并提供了对于发动机、电动机以及电池的具体控制条件和执行方案。最后还介绍了如何通过修改ADVISOR软件的相关组件来实现这些功能。
  • 牵引系统(TCS)标定,利用地面附着特性优化,改进TCS发,应用PID
    优质
    本研究针对TCS系统,通过深入分析轮胎与路面间的摩擦特性,优化了车辆在紧急制动及加速时的稳定性。创新性地改良了TCS中发动机扭矩调控策略,并引入PID控制技术以提升响应速度和精度,为汽车安全驾驶提供了更佳保障。 牵引力控制系统(TCS)是一种车辆安全系统,通过调整车辆的牵引力来提供更好的操控性和稳定性。TCS标定涉及根据特定车型的特点与性能对其进行优化设置,以确保其在各种条件下的高效运作。 TCS控制算法是该系统的中枢部分,它利用车载传感器收集的数据实时监测轮胎与地面之间的附着特性,并据此调节车辆的牵引力输出。这有助于避免加速或转弯时发生的轮胎打滑现象,从而提升整体驾驶安全性和舒适度。 制动滑移和驱动滑转是指在刹车或者加油门过程中可能出现的轮胎相对路面发生不正常移动的现象。TCS通过监测各车轮的具体附着情况,并适时调整制动力或是发动机扭矩输出来维持理想的抓地力水平,防止这些不利状况的发生。 为了实现上述目标,系统还会运用专门设计的算法如PID转矩计算以及主动制动压力调节等技术手段来进行精确控制。
  • torque-motoraadrc.rar_ADRC PID LabVIEW应用___算
    优质
    本资源包包含ADRC与PID在LabVIEW环境下针对力矩电机进行力矩控制的算法实现,适用于深入研究和开发高性能电机控制系统。 这段文字描述了一个用于力矩电机实时控制的系统,其中包括了PID算法和ADRC算法的实现。