Advertisement

光电探测器阵列相机像素的基本结构

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了光电探测器阵列相机中像素的基本构成与工作原理,分析其设计特点及技术性能。 将多个PN型光电探测器组成阵列可以形成光电成像系统中的摄像器件。这种摄像器件的功能是将照射到探测器阵列上的光学图像信息以电信号形式按时序串行输出。常见的固体摄像器件包括CMOS(互补金属氧化物半导体)和CCD(电荷耦合装置)。CMOS型摄像器件的像素基本结构类似于一个普通的CMOS管,其中利用源极N+注入和P型衬底形成的PN结光电二极管作为光敏元吸收入射光。当PN结反偏时,产生的空穴向衬底漂移,而电子则被源极收集。积累的电子在正栅极脉冲电压的作用下通过表面反型传输。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本文探讨了光电探测器阵列相机中像素的基本构成与工作原理,分析其设计特点及技术性能。 将多个PN型光电探测器组成阵列可以形成光电成像系统中的摄像器件。这种摄像器件的功能是将照射到探测器阵列上的光学图像信息以电信号形式按时序串行输出。常见的固体摄像器件包括CMOS(互补金属氧化物半导体)和CCD(电荷耦合装置)。CMOS型摄像器件的像素基本结构类似于一个普通的CMOS管,其中利用源极N+注入和P型衬底形成的PN结光电二极管作为光敏元吸收入射光。当PN结反偏时,产生的空穴向衬底漂移,而电子则被源极收集。积累的电子在正栅极脉冲电压的作用下通过表面反型传输。
  • CCD摄
    优质
    本发明涉及一种基于光电探测器阵列技术的CCD(电荷耦合器件)摄像装置,适用于高精度图像捕捉与处理领域。 目前广泛使用的摄像器件是CCD型摄像器件。这种技术于1970年由贝尔实验室发明,并且此后关于CCD的研究取得了显著进展。从1972年的40微米到1995年减少至5微米,像素尺寸不断缩小;同时,单个像素单元的数量也由最初的不足2000增加到了两千六百多万。 CCD型摄像器件主要包含三个部分:进行光电转换的光电探测器阵列、移位寄存器电荷转移以及MOSFET源跟随输出。其中,实现光电转换的部分可以通过普通的PN二极管完成;而区别于其他类型摄像器件的关键在于其移位寄存器电荷转移功能。 在CCD中,电荷的移动通过一系列紧密排列的MOS电容器来实现(如图1所示)。当施加正电压到某个栅极时,在该栅极下方会形成一个电子势阱。信号电荷在此过程中被捕获并储存起来。
  • GaN PIN型
    优质
    本研究探讨了基于氮化镓(GaN)材料的PIN型光电探测器的结构特性。通过优化其设计与制造工艺,旨在提升器件在紫外光谱区的应用性能。 为了提高工作速度和响应度,通常采用PIN结构的GaN紫外光电探测器具有以下优点:(1)由于高的势垒效应,暗电流较低;(2)具备较高的工作速度;(3)高阻抗使其适合于焦平面阵列读出电路的应用;(4)通过调节本征层厚度可以优化其量子效率和响应时间;(5)器件可以在低偏压或零偏压下正常运行。在PIN结构中,本征层起到关键作用,需要进行精细调整以平衡效率与速度之间的关系。 图3-25展示了一种典型的GaN PIN光电探测器的构造:首先,在600°C条件下沉积一层厚度为20纳米的低压缓冲层于蓝宝石衬底上;接着淀积出厚达500纳米的n型Al0.5Ga0.5N层,然后生长本征层1(即Al 0.4Ga 0.6N)。
  • GaN PIN型
    优质
    本研究探讨了基于氮化镓(GaN)材料的PIN型光电探测器结构设计与性能分析,旨在提高器件在紫外光谱范围内的响应度和工作稳定性。 为了提升工作速度与响应性,PIN结构通常被采用。GaN紫外光电探测器的PIN结构具有以下优点:(1)由于高势垒的存在,暗电流较低;(2)具备较高的工作速度;(3)适合于焦平面阵列读出电路所需的高阻抗特性;(4)通过调节本征层厚度可以优化量子效率和工作速度;(5)器件可在低偏压或零偏压条件下运行。在PIN结构中,本征层发挥着关键作用,其厚度需要仔细调整以同时影响效率与设备速度。 图3-25展示了一种常见的GaN PIN光电探测器结构:首先,在600°C的温度下沉积一个20nm厚的低压缓冲层至蓝宝石衬底上;随后,再沉积一层500nm厚的n型Al0.5Ga0.5N材料,并在此基础上生长本征层1,该层由Al 0.4Ga 0.6N组成。
  • 在二维件中模拟
    优质
    本研究聚焦于二维材料中光电探测器的设计与性能优化,通过计算机仿真探索其内部结构和工作原理,以期推动新型光电器件的发展。 图1展示了在器件模拟软件Atlas中的输入结构、外加电压示意图以及通过二维模拟得出的pn结位置和耗尽区位置。从该图可以看出,N阱与P+区域构成一个二极管,称为工作二极管D;而N阱与衬底则形成另一个二极管,称为屏蔽二极管Ds。在衬底深处产生的光生载流子会被屏蔽二极管的耗尽区吸收,无法扩散到工作二级管内。因此,在工作二极管内部没有长距离扩散的光生载流子,只有N阱内的短途扩散载流子存在,从而提高了该二极管的速度。 从图中可以看出,当N阱上的耗尽区(即P+和N阱形成的区域)增大时,进入工作二级管D中的光生载流子的扩散成分会减少,并且速度也会提高。为了实现这一目标,在实际CMOS工艺中需要使N阱的掺杂水平与衬底相当以获得轻掺杂的I区,但这在实践中是很难做到的。 此外,制作过程中还需考虑其他因素的影响。
  • 关于p-i-nGaN性能
    优质
    本研究聚焦于P-I-N结构GaN光电探测器的性能分析,深入探讨其材料特性、器件设计与应用潜力,旨在推动高效能光电器件的发展。 近年来,可见盲与太阳盲光电探测器在火灾监控、太空通信及导弹尾焰检测等领域得到了越来越多的关注。由于氮化镓(GaN)是一种直接宽带隙半导体材料,在可见光区和紫外区的光电器件中被广泛选用。p-i-n结构器件因其高响应度、低暗电流以及便于集成等优点受到青睐。通过金属有机气相外延(MOCVD)技术制备了p-i-n结构的GaN紫外光电探测器,并在氮气气氛下进行热退火处理,提高了p型GaN层中的载流子浓度,进而降低了器件的暗电流。当偏置电压为1伏特时,该器件的暗电流仅为65皮安;而在相同条件下,其最大响应度值出现在361纳米波长处,大小达到0.92 AW。
  • GaN PIN在显示与技术中应用
    优质
    本研究探讨了GaN PIN光电探测器在显示及光电技术领域的应用结构,分析其性能优势和潜在应用场景。 GaN PIN光电探测器是显示与光电技术领域中的关键传感器件,在紫外光检测方面具有显著优势。PIN结构(即P型-本征-N型结构)因其独特的性能在提高器件效率上表现出众。 以下是关于GaN PIN光电探测器的详细说明及其优点: 1. **低暗电流**:由于较高的势垒,这种类型的光电探测器可以减少无光照条件下的电流流动。这有助于降低噪声水平,在没有光源的情况下提高了信号与噪音的比例,使检测更加灵敏。 2. **高速响应**:高阻抗特性使得PIN结构的GaN光电探测器能够快速响应光强度的变化,从而提高其工作速度。这对于需要实时监测的应用至关重要。 3. **适应焦平面阵列读出电路**:由于其高阻抗特点,该类型的器件可以与大规模并行检测系统中的焦平面阵列读出电路兼容,适用于紫外光谱仪或天文观测设备等应用。 4. **量子效率和响应速度可调**:通过调整本征层厚度来改变探测器的量子效率及响应时间。这使得设计者可以根据具体需求优化器件性能。 5. **低偏压操作能力**:GaN PIN光电探测器能够在较低电压甚至零电压下工作,从而降低电源消耗并提高能源使用效率。 在制造过程中,通常包括以下步骤: - 在蓝宝石衬底上沉积20nm厚的低压缓冲层,以提供良好的晶格匹配和生长基础。 - 接着,在上面沉积500nm厚的n型Al0.5Ga0.5N层作为导电层,增加材料的电导率。 - 然后,生长本征层Al0.4Ga0.6N。该步骤中,通过调整铝含量从50%到40%,形成17nm厚的过渡层以减少缺陷并优化异质结势垒。 - 接下来,在上面沉积100nm厚的掺Mg p型Al0.4Ga0.6N层用于形成P-N结,并提供必要的电荷载流子。 - 最后,添加5nm薄p型GaN层以改善欧姆接触并减少光吸收。 在触点部分使用半透明NiAu作为P型接触和TiAu作为N型接触确保良好导电性的同时允许光线通过。 综上所述,通过精心设计的PIN结构与材料组合,GaN PIN光电探测器实现了高效、高速的紫外光检测能力,并广泛应用于环境监测、生物医学检测以及安全监控等领域中,对推动显示和光电技术的进步具有重要意义。