
线性时变系统稳定性判据——线性系统分析
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本论文探讨了线性时变系统的稳定性问题,提出了一套新的稳定性判据,并结合实例验证其有效性。为线性系统分析提供了新视角和方法。
对于连续时间线性时变系统,设Φ(t,t0)为系统的状态转移矩阵,则原点平衡状态xe=0在时刻t0是李亚普诺夫意义下稳定的充分必要条件是存在一个依赖于t0的实数β(t0)>0,使得不等式 ‖Φ(t,t0)‖≤β(t0)<∞ 成立。进一步地,当且仅当对所有t0都存在独立实数β>0使上述不等式成立时,系统原点平衡状态xe=0为李亚普诺夫意义下一致稳定。
对于连续时间线性时变系统,设Φ(t,t0)为系统的状态转移矩阵,则唯一平衡状态xe=0在时刻t0是渐近稳定的充分必要条件是存在一个依赖于t0的实数β(t0)>0使不等式 ‖Φ(t,t0)‖≤β(t0)<∞ 成立。进一步地,当且仅当对所有t0∈[0,∞]都存在独立实数β1>0和β2>0使得不等式 ‖Φ(t,t0)‖≤β1e-β2(t-t0)成立时,系统原点平衡状态xe=0为一致渐近稳定。
全部评论 (0)
还没有任何评论哟~


