Advertisement

PIN结构的集电极形成光电二极管

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本文介绍了通过PIN结构形成集电极区域以构建高性能光电二极管的技术方法,探讨了其在光电器件中的应用潜力。 在不改动工艺流程的前提下,N+埋层集电极可以充当光电二极管的阴极部分;同时,N型外延集电区则适合用作PIN光电二极管中的I层(即本征层),而基极注入区域可作为阳极使用。这使得在标准双极工艺中能够集成具有薄本征层结构的光电二极管。 高速双极工艺通常采用约1微米厚的N型外延层,这样的厚度会导致探测器在黄光至红外线波段(580到1100纳米)内量子效率偏低。然而,由于该薄层材料的存在,由光脉冲信号引发的光电流上升和下降时间将变得十分短暂,从而有助于提升响应速度。这类光电二极管的数据传输速率可以达到每秒十吉比特。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • PIN
    优质
    本文介绍了通过PIN结构形成集电极区域以构建高性能光电二极管的技术方法,探讨了其在光电器件中的应用潜力。 在不改动工艺流程的前提下,N+埋层集电极可以充当光电二极管的阴极部分;同时,N型外延集电区则适合用作PIN光电二极管中的I层(即本征层),而基极注入区域可作为阳极使用。这使得在标准双极工艺中能够集成具有薄本征层结构的光电二极管。 高速双极工艺通常采用约1微米厚的N型外延层,这样的厚度会导致探测器在黄光至红外线波段(580到1100纳米)内量子效率偏低。然而,由于该薄层材料的存在,由光脉冲信号引发的光电流上升和下降时间将变得十分短暂,从而有助于提升响应速度。这类光电二极管的数据传输速率可以达到每秒十吉比特。
  • PIN参数及原理
    优质
    本文介绍了PIN二极管的特性参数及其内部结构和工作原理,帮助读者理解其在电子电路中的应用。 PIN二极管参数如下: 1. 插入损耗:当开关导通时的衰减不为零称为插入损耗。 2. 隔离度:当开关断开时其衰减不是无穷大,这种状况被称为隔离度。 3. 开关时间:由于电荷存储效应,PIN管在开启和关闭过程中需要一定的时间,这个过程所需时间为开关时间。 4. 承受功率:这是指微波开关能够在特定工作条件下承受的最大输入功率值。 5. 电压驻波系数:这反映了端口的输入输出匹配情况。 6. 视频泄漏 7. 谐波:PIN二极管具有非线性特性,因此会产生谐波。在宽带应用场合下,这些谐波可能落在使用频带内造成干扰。 开关类型包括反射式和吸收式两种。其中,吸收式开关的性能优于反射式开关。 PIN二极管结构通常由P型杂质掺杂半导体材料与N型杂质掺杂半导体材料直接组成PN结。但在PIN二极管中,在这两者之间加入一层薄且低掺杂的本征(Intrinsic)半导体层。因为这种本征半导体几乎等同于绝缘体,因此它增加了两个电极之间的距离并减小了P-N结电容。此外,当反向电压增加时,P型和N型耗尽区宽度会增大,从而进一步减少结电容的大小。 由于I层的存在以及通常较轻掺杂的P区的影响,PIN二极管具有上述特性。
  • 驱动
    优质
    激光二极管驱动集成电路是一种专门设计用于控制和驱动激光二极管工作的半导体芯片,广泛应用于光通信、打印等行业。 激光二极管驱动芯片是一种控制激光二极管输出的集成电路。它能提供稳定的电流以确保激光器正常工作,并具备多种功能来保证光输出稳定、可靠且符合相关标准协议。 UX2222是一款支持155Mbps到2.125Gbps数据传输速率的SFF/SFP激光驱动芯片,适用于小型可插拔光纤模块。这种类型的模块广泛应用于高速通信领域。 该芯片的主要特点包括: - 支持+3.3V和+5V电源供电。 - 具备自动功率控制(APC)功能,确保平均光输出稳定不变,在温度变化或激光器寿命期内阈值电流发生变化时仍能保持恒定的输出功率。 - 配备有温度补偿调制功能,可根据需要对随温度变化而改变的消光比进行校正。 - 符合SFP多源协议(MSA)和SFF-8472发射诊断要求。 - 上升和下降时间小于150皮秒,确保高速数据传输中的信号质量不受影响。 - 适用于Fabry-Pérot、分布式反馈(DFB)以及垂直腔面发射激光器(VCSEL)等多种类型的激光器。 芯片的引脚配置与描述如下: - MODTC引脚用于调节调制电流(IMOD)的温度系数,通过在该引脚和地之间接入电阻来设定。 - VCC引脚为芯片提供+3.3V或+5V供电电压。 - INP和INN分别为非反相与反相信号输入端口。 - TX_DISABLE引脚用于控制激光器发射功能的开启/关闭,高电平或悬空时禁用输出;低电平时启用输出。 - PC_MON引脚为光电流监测输出,在外部电阻上形成与监控二极管电流成比例的电压信号。 - BC_MON引脚是偏置电流监测端口,其电流在外部电阻器上产生与偏置电流成正比的电压值。 - SHUTDOWN引脚用于关闭芯片功能,当该引脚被拉至高电平时,整个电路停止工作。 典型的应用电路图展示了如何使用UX2222激光二极管驱动芯片。它包括了必要的电阻和连接器,并说明了如何配置引脚以实现对激光器的精确控制。 在实际应用中,自动功率控制系统(APC)是关键功能之一。该反馈回路通过监控光电二极管来保持平均光输出稳定不变,确保在整个工作寿命期内提供稳定的光线输出。温度补偿机制旨在抵消随温度变化而产生的消光比差异,在不同环境条件下都能维持良好的信号质量。 激光驱动芯片需要准确地控制电流以保证激光器正常运作,并且必须防止超出安全操作范围的情况发生。此外,还应具备故障检测和保护功能,例如通过TX_FAULT输出引脚提供单点锁定机制来帮助系统识别并应对潜在问题。 设计与使用高质量的激光二极管驱动芯片对于构建高性能光通信系统至关重要,它需要与其他高速通信组件(如电信号处理单元、光模块及光纤网络设备)兼容以确保整个链路性能满足数据传输需求。
  • 雪崩原理与
    优质
    雪崩光电二极管(APD)是一种高性能光检测器,通过内部雪崩倍增效应实现高灵敏度信号检测。本章将深入探讨其工作原理和物理结构。 雪崩光电二极管是一种利用p-n结的光检测二极管,通过载流子的雪崩倍增效应来放大光电信号,从而提高检测灵敏度。其基本结构通常采用易于产生雪崩倍增效应的Read二极管结构(即N+PIP+型结构,P+面接收光线),工作时施加较大的反向偏压以达到雪崩状态。
  • 工艺
    优质
    本研究探讨了采用双极工艺制造的光电二极管,旨在提高其在光电信号转换中的性能和效率。通过优化材料与设计,我们实现了更佳的响应速度、更高的灵敏度以及更低的噪声水平,从而为高性能光学传感器的应用提供了可能。 图1展示了一种基于标准双极工艺的N+-P型光电二极管。其中,N+区由N+埋层及插入的N+集电极注入形成,而P区则直接使用轻掺杂的P型衬底。图中显示N+区与P+区之间的间距为5 μm,并且将N+区面积定义为光电探测器的有效面积。 这种结构能够高效地进行光电转换,在施加4.2伏特偏置电压时,量子效率η达到30%。然而,由于光生载流子在外延层中的扩散速率较慢,导致响应速度相对较慢。该器件与一个跨阻抗为1.8 kΩ的双极型前置放大器单片集成,在探测器面积为100×100 μm²且入射光波长为850 nm的情况下,可以测得特定的数据传输率。
  • -传感器技术
    优质
    本章节深入探讨光电二极管和光敏二极管的工作原理、特性及其在现代传感器技术中的应用,是理解和设计光学传感系统的重要基础。 光电二极管(光敏二极管)的符号以及其接法如下:
  • 应用
    优质
    光电二极管应用电路介绍涉及将光信号转换为电信号的过程。本文探讨了其在各种传感器、通信系统及自动控制设备中的具体实现方式与原理。 光电二极管实用电路的详细解释以及可以直接应用于实际处理中的老外牛人设计的实际电路。
  • 设计
    优质
    本项目专注于二极管在光电领域的应用设计与开发,通过优化光电转换效率和响应速度,探索其在光学传感器、信号传输及光通信中的创新用途。 光电二极管的电路设计涉及将光信号转换为电信号的过程。在设计这类电路时,需要考虑光电二极管的工作原理、特性以及如何将其有效地集成到更大的系统中以实现特定功能。这包括选择合适的偏置方式(如反向偏置)、确定适当的增益和带宽设置,并确保整个系统的稳定性和可靠性。此外,在实际应用中还需注意环境因素对光电二极管性能的影响,比如温度变化可能会导致其特性发生变化,因此在设计时应充分考虑这些变量以优化系统表现。
  • 高速LD强调制与PIN型PD转换路设计
    优质
    本研究探讨了高速LD二极管的光强调制技术,并创新性地提出了适用于该器件的PIN型光电探测器(PD)光电转换电路设计方案,旨在提升数据传输效率和稳定性。 本段落介绍了pin型高速光电转换电路以及通过压控电流源实现的半导体激光器光强调制电路。
  • 驱动
    优质
    激光二极管驱动电路是一种用于控制和供给激光二极管所需电流与电压的电子装置,广泛应用于光通信、打印、扫描等领域。 ELM185BB 激光二极管驱动器能够实现功率的稳定控制,并配备有PD反馈功能及APC功能。