Advertisement

利用ADI方法求解二维热传导方程的稳态解并绘制等高线图-MATLAB开发

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目运用ADI(交替方向隐式)算法在MATLAB环境下求解二维热传导方程的稳定状态解,并生成相应的等高线图,以直观展示温度分布情况。 我们有兴趣使用ADI方法求解二维热传导方程的稳态解。边界条件为:T=200 R在x=0 m;在x=2 m、y=0 m 和 y=1 m处 T=0 R。初始时内部点温度均为 0 R。α = 0.2 W/m^2。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ADI线-MATLAB
    优质
    本项目运用ADI(交替方向隐式)算法在MATLAB环境下求解二维热传导方程的稳定状态解,并生成相应的等高线图,以直观展示温度分布情况。 我们有兴趣使用ADI方法求解二维热传导方程的稳态解。边界条件为:T=200 R在x=0 m;在x=2 m、y=0 m 和 y=1 m处 T=0 R。初始时内部点温度均为 0 R。α = 0.2 W/m^2。
  • Crank-Nicolson线-MATLAB
    优质
    本项目使用MATLAB编程实现Crank-Nicolson差分格式,以数值方法求解一维热传导方程在稳态条件下的解,并通过绘制等高线图直观展示温度分布情况。 我们有兴趣使用CN方法求解一维热传导方程的稳态解。边界条件为:在x=0和0.3米处T=300K,在所有其他内部点处T=100K。扩散系数α = 〖3*10〗^(-6) m-2s-1,时间t=30分钟,空间步长Δx=0.015m和时间步长Δt=20秒。
  • MATLAB
    优质
    本程序利用MATLAB编写,旨在解决二维稳态热传导问题。通过数值方法计算温度分布,适用于工程与科学中的热学分析。 使用MATLAB程序可以解决二维稳态热传导方程,并通过差分法迭代求解数值解。这种方法能够有效地模拟平板中的热力场。
  • 优质
    本文章介绍了多种求解二维热传导方程的方法,包括解析法、数值逼近以及有限元分析等技术手段。适合对偏微分方程及物理建模感兴趣的读者参考学习。 本段落利用有限差分法求解二维热传导方程的数值解,并通过Matlab编程进行计算与绘图。随后将所得结果与解析解绘制的图像进行对比,并制作误差图以分析二者之间的差异。
  • 优质
    本篇文章探讨了二维热传导方程的不同求解策略和数值算法,包括解析法、有限差分法及谱方法等,并对其适用性和精确度进行了分析。 本段落采用有限差分法求解二维热传导方程的数值解,并通过Matlab编程进行计算并绘图。随后,将所得结果与解析解绘制出的图像进行比较,并生成误差图以展示两者之间的差异。
  • 优质
    本文章探讨了多种求解二维热传导方程的方法,包括解析法和数值逼近技术,并分析其适用场景与优缺点。 本段落采用有限差分法求解二维热传导方程的数值解,并通过Matlab编程进行计算与绘图。随后将所得结果与解析解绘制的图像进行比较,并制作误差图以展示两者之间的差异。
  • 问题.pdf
    优质
    本文探讨了二维稳态导热问题的数值解析方法,详细介绍了适用于此类物理现象的各种计算技术和算法模型。 二维稳态导热问题的数值解法.pdf 这篇文章探讨了如何通过数值方法求解二维稳态导热方程的问题。文中详细介绍了相关理论背景、计算模型以及具体的算法实现,为研究者提供了一种有效的分析工具和参考文献。
  • 基于MATLAB微分数值
    优质
    本研究利用MATLAB软件,探讨并实现了一种求解二维稳态导热问题微分方程的数值方法,为工程热力学领域提供了有效的计算工具。 二维稳态导热微分方程的数值求解MATLAB程序涵盖了温度边界、热流边界以及对流换热边界的处理方式。该内容适用于《传热学》、《数值传热学》及《工程热力学》等课程中的高级作业任务。
  • 基于MATLAB齐次ADI实现
    优质
    本研究基于MATLAB平台,采用交替方向隐式(ADI)方法求解二维齐次热传导方程。通过数值模拟验证了算法的有效性和准确性。 本段落探讨了二维齐次热传导方程的ADI格式,并详细介绍了向后差分格式、CN(Crank-Nicolson)差分格式以及结合二者的向后CN差分(即ADI)格式。文章从理论推导开始,逐步深入到数值实例分析计算阶段。最后通过MATLAB实验数据表格展示结果并得出结论,在附录中提供了各种差分格式的代码实现。
  • 关于问题数值
    优质
    本文探讨了针对二维非稳态导热现象的有效数值模拟技术。通过分析不同算法的优劣,提出了一种高效的求解策略,为该领域的研究提供了新的视角和工具。 ### 一种二维非稳态导热问题的数值解法 #### 摘要与背景介绍 本段落探讨了一种二维非稳态导热问题的数值解法,并将其作为计算机数值分析的一个参考案例。研究主要关注如何在考虑第三类边界条件的基础上,通过交替方向隐式法(ADI)来构建适用于不同类型边界条件的二维非稳态导热问题的差分方程。这种方法不仅简化了计算过程,还提高了计算方法的通用性。 #### 能量方程与定解条件 在二维直角坐标系中,对于物性参数为常数且无内热源的非稳态导热问题,能量守恒方程可以表示为: \[ \frac{\partial T}{\partial t} = \alpha \left( \frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} \right) \] 其中 \(T\) 代表温度(℃),\(α\) 是导温系数 (\(m^2/s)\),\(t\) 表示时间 (s)。 对于该问题,设定以下三种边界条件: 1. **第一类边界条件**:边界温度已知,即 \(T(x_b,y_b,t)=T_b\)。 2. **第二类边界条件**:边界面上的热流密度已知,即 \(-k\frac{\partial T}{\partial n} = q_b\)。 3. **第三类边界条件**:边界面上的对流换热系数 \(h\) 与流体温度 \(T_{∞}\) 已知,即 \(-k\frac{\partial T}{\partial n} = h(T-T_∞)\)。 #### 数值计算方法 为了求解上述问题,首先需要利用控制容积法来导出内部节点、边界节点以及角点的有限差分方程,使它们的形式适合于ADI法求解。接下来使用追赶法(或称托马斯算法)来求解这些方程组。 1. **内部节点的差分方程**: 对于内部节点,差分方程可以表示为: \[ \frac{T_{i,j}^{n+1}-T_{i,j}^n}{Δt} = α\left( \frac{T_{i+1,j}^n - 2T_{i,j}^n + T_{i-1,j}^n}{(Δx)^2} + \frac{T_{i,j+1}^n - 2T_{i,j}^n + T_{i,j-1}^n}{(Δy)^2}\right) \] 2. **边界节点的差分方程**: 当求解包含上述三种边界条件的问题时,为了得到适用于所有类型的边界条件的通用离散化方程,需要将第一类和第二类边界条件转换为当量第三类边界条件。 - **第一类边界条件的当量第三类边界条件**: \[ h(T_b - T) = h(T_b - T_∞) \] - **第二类边界条件的当量第三类边界条件**: \[ h(T - T_∞) = q_b \] 3. **角点的差分方程**: 对于角点,离散化方程也需要根据边界条件进行调整。 4. **交替方向隐式法的应用**: ADI法是一种高效的方法,它将空间导数分解为两个一维问题,每个问题沿着一个坐标方向进行求解。这样做的好处在于可以显著减少计算量,在处理大规模系统时尤其明显。 5. **求解步骤**: - 利用初始条件,逐行求解由每行节点方程组形成的三对角线方程组。 - 利用前一步骤的结果,逐列求解由每列节点方程组形成的三对角线方程组。 - 如果计算的时间步达到给定值或满足收敛条件,则停止计算;否则重复上述步骤直到满足终止条件。 #### 计算机程序与计算结果 本段落进一步提到开发相应的计算机程序来实现上述方法,并给出了具体的计算结果,验证了该方法的有效性和准确性。这种数值解法不仅可以用于解决二维非稳态导热问题,还可以扩展到更复杂的物理场景中,例如涉及多相流动、化学反应等问题。 #### 结论 本段落提出的方法不仅提供了一种有效解决二维非稳态导热问题的手段,而且通过将不同的边界条件统一处理,大大提高了计算方法的通用性和灵活性。此外,这种方法还具有较高的计算效率,适用于工程实际中的复杂传热问题。