Advertisement

分享一种改进的基于H桥的电机驱动电路设计方案,该方案采用MOS管。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
在飞思卡尔竞赛中,电机驱动是必不可少的组成部分。经过对众多采用集成MOS驱动半桥设计的对比,无论是通过仿真还是实际测试,基于芯片手册和芯片内部结构进行的驱动方案都未能达到理想效果,主要原因是高侧MOS器件在高负载下的问题没有得到充分的解决。所谓的“重载”现象指的是,当高侧MOS导通时,其压降相对较小,源极电压接近于VDD,而MOS器件导通所需的栅极电压Vgs大于其开启电压,从而导致高侧MOS器件未完全导通,仍然处于高阻状态,大部分电压降落在了MOS器件上。 普遍采用的方法是利用自举电路来提升电压;这种自举电路通常通过直流电和方波信号与二极管和电容进行耦合。 然而,个人认为这种方法效果不佳。经过多次改进后,使用三极管将隔离升压芯片的电压提升至更高的水平以导通MOS器件。由于导通MOS器件的栅极几乎不需要电流输入,升压芯片因此没有承担过大的负担。通过NPN与PNP两种三极管的配合使用,有效地解决了逻辑上的问题:当输入控制信号同时为1或0时,4个MOS器件都不会导通,从而避免了同侧MOS器件将电源短路。该电路已经通过了理论分析、实践验证以及模电老师的审阅(本人是大二学生),但最终还是决定采用7971芯片的原因较为复杂…… 将原理图和PCB设计共享给有需要的同学或朋友们, 鼓励大家可以尝试使用、改进或者学习借鉴;如果能提供任何建议或指点方向也请不吝赐教。 相信经验丰富的工程师和专家们会对其缺乏高度评价。出自北方民族大学

全部评论 (0)

还没有任何评论哟~
客服
客服
  • HMOS
    优质
    本文提出了一种创新的电机驱动电路设计,通过优化H桥与MOS管的应用,显著提升了驱动效率及性能稳定性。 在飞思卡尔比赛中电机驱动是必不可少的环节,在对比了大多数采用集成MOSFET半桥设计后发现,根据芯片手册和内部结构制作出来的驱动无论是仿真还是实物效果都不理想。究其原因在于高侧MOSFET导通时压降很小,源极接近于VDD电压,而要使MOSFET完全开通需要栅源电压大于开启电压阈值。因此,在这种情况下高侧的MOSFET没有达到饱和状态,依然处于线性区工作,并且大部分电压损失在了MOS管上。 为了解决这一问题,通常会采用自举电路来提升驱动信号的电平以确保足够的栅源压差使MOS完全导通。然而这种方法效果并不理想。经过几次尝试改进后,我使用三极管将隔离升压芯片产生的电压用于拉高MOSFET的栅极电压,因为开通时所需的电流非常小,所以对升压电路的影响不大;同时通过NPN与PNP晶体管组合实现了逻辑控制上的优化处理,在输入信号为0或1的情况下均保证了不会出现同侧短路的情况。 这个设计已经经过理论分析、实际测试以及模电老师的审查认可。不过出于某些原因(此处省略具体细节),最终还是决定采用7971驱动方案,尽管其性能可能不如上述改进电路理想。 希望与大家共享这一原理图和PCB布局图,并期待有兴趣的朋友能够从中受益或者提出进一步的优化建议。
  • H
    优质
    本设计提供了一种高效稳定的H桥驱动电路方案,适用于电机控制等领域,详细探讨了硬件架构与软件算法优化。 H桥驱动电路是一种常见的电子电路设计,在电机控制与功率转换系统中有广泛应用。在恩智浦杯智能车大赛中,掌握这种技术是参赛者的必备技能之一。因其形状类似于字母“H”,故得名,由四个开关器件(如晶体管或MOSFET)组成,能够双向控制负载,例如直流电机的正反转。该设计允许电流反向流动,从而实现对电机的灵活操控。 电路的小型化和集成化是智能车这类空间受限设备的关键考虑因素之一。升压变换器可能被用于提升输入电压以满足高电压需求,电感则用来存储能量并平滑电流变化,在大电流、高电压环境下使用功率电感可以更好地适应工作环境。 PCB1.PcbDoc文件包含电路板的布局和布线信息,设计时需确保信号完整性和电磁兼容性,并优化电源与地线走线以减少干扰。FpYatz8NkayYtDWRJ9d8Pqxdvoj-.png及Fq63bZAaoIpvnphymnoddHcnHEWY.png可能为电路原理图或PCB截图,有助于理解工作流程和元器件连接。 Sheet1.SchDoc文件详细列出电路中的每个元器件及其连接关系。通过这份文档可以了解各个开关器件、电感、电阻及电容的组合方式以及控制信号接入方法以驱动电机。 该压缩包内含一份完整的H桥驱动电路设计方案,包括理论原理、设计与实物实现部分。这对学习电机控制和嵌入式系统开发的学生或参赛者来说是非常宝贵的资源。实际操作中需要理解工作原理,并熟练掌握电路设计软件及具备硬件调试技能才能将方案转化为运行中的系统。
  • H仿真(使STP75NF75 MOS和Multisim10)-
    优质
    本项目设计了一种基于STP75NF75 MOSFET的H桥电机驱动电路,并利用Multisim10软件进行了详细的仿真分析,为高效电机控制提供了一个可靠的电路解决方案。 本设计的MOS管STP75NF75 H桥驱动仿真电路在48V直流电机驱动应用上非常普遍。该分立元件电路使用STP75NF75 MOS管,适用于频率可达30kHz左右的应用场合,并且稳定可靠,在成本受限的产品中可以替代IR21XX驱动IC。这个电路已经经过多年的商业化检验,确保按照提供的参数制作即可正常工作。 在制作过程中需要注意以下几点: 1. 如果电机的工作电压低于等于12V,则可能需要调整上桥臂晶体管的工作状态。 2. 自举电容C5和C6应使用低漏电流的元件。 3. 若成本允许,D5和D6建议采用快恢复型二极管如FR157。 4. 主滤波电容C11和C12必须是高频低阻抗类型,否则纹波可能导致发热问题。 5. C9和C10的耐压值应至少为电源电压的一倍以上。 6. 注意布线设计,特别是对于高频部分(参考相关文档)的设计指南要遵循。 7. 由于采用了自举电路,在启动时必须先开启下桥臂再开启上桥臂,并且PWM信号只能加在下桥臂上;同时,PWM占空比不能超过95%,否则重载启动或短路测试可能导致损坏(这一问题同样存在于IR21XX驱动IC中)。
  • MOS
    优质
    本项目专注于设计高效能MOS管驱动板电路方案,并提供详细的电路图。旨在优化电路性能,提升电力转换效率与稳定性。 标题中的“MOS管驱动板电路方案设计”指的是在电子工程领域内为高效控制金属-氧化物半导体场效应晶体管(MOSFET)的工作状态而专门设计的一种专用电路板。MOSFET是一种广泛使用的开关元件,尤其适用于电源转换、电机驱动以及其他需要大电流控制的应用场景中。 描述中的“实测可用”表明该驱动板经过实际测试验证其有效性,并能够在真实环境中正常工作。这通常意味着设计方案合理且元器件选择恰当,能够满足性能需求并具备一定的可靠性。 结合标签“mos驱动板”和“电路方案”,可以推测压缩包内可能包含关于如何设计及实现MOSFET驱动板的详细资料,包括但不限于电路原理图、设计方案以及PCB布局等信息。压缩包中的PNG格式图像文件很可能是展示具体硬件连接与布局的电路图或截图。而Driver_board.rar则很可能存储了CAD文件、元件清单、文档以及其他相关资源。 一个典型的MOS管驱动板设计会涉及以下关键知识点: 1. **MOSFET的选择**:根据应用需求选择合适的MOSFET,包括电流和电压等级以及开关速度等参数。 2. **驱动电路**:提供足够的栅极驱动电流以确保快速的开启与关闭,并防止过高栅极-源极电压导致损坏。 3. **保护电路**:如过压、欠压保护措施来预防电源异常时对MOSFET造成的损害。 4. **控制信号**:接收来自微控制器或其他逻辑电路发出的开关指令。 5. **隔离设计**:通常采用光电耦合器或数字隔离器确保控制部分与高电压驱动部分之间电气隔离,提高系统安全性。 6. **PCB布局优化**:良好的布线有助于减少电磁干扰并提升系统的稳定性。 7. **热管理方案**:考虑MOSFET和驱动电路的散热需求,并可能需要添加散热片或散热器来改善冷却效果。 8. **功率元件配置**:在开关电源中,适当的电感与滤波电容设置能够平滑输出电压并形成能量储存。 通过分析这些文件内容,可以学习到MOSFET驱动板的设计理念、各组件的功能以及它们如何协同工作以控制MOSFET。这有助于理解实际工程中的设计实践,并提升电子电路设计方案的能力。
  • MOSH示意图
    优质
    本资料提供了一种基于MOS管的H桥电机驱动电路的设计与实现方法,包含详细的电路图和工作原理说明。适合电子工程爱好者和技术人员参考学习。 H桥是一种典型的直流电机控制电路,因其外形酷似字母H而得名。它由四个三极管组成四条垂直腿,中间的横杠则是连接的电机。 在实际应用中,单片机虽然能够输出直流信号,但其驱动能力有限,因此通常通过驱动较大的功率元件如MOSFET来产生足够的电流以驱动电机,并且可以通过调整占空比来控制加到电机上的平均电压,从而实现对转速的调节。H桥电路主要采用N沟道MOSFET构建。 要使电机运转,必须让H桥中的对角线开关导通,并通过改变电流方向来控制电机正反转。在实际驱动中通常会使用硬件电路方便地控制这些开关。常用的驱动芯片包括全桥驱动HIP4082和半桥驱动IR2104。其中,IR2104型是一种用于半桥配置的MOSFET驱动器,而HIP4082则适用于需要四个MOS管组成完整H桥电路的应用场合。
  • 较大功率直流H
    优质
    本设计旨在提出一种高效能的大功率直流电机H桥驱动电路方案,优化电流控制和散热性能,适用于多种工业自动化设备。 近期的一篇文章深入分析并讨论了较大功率直流电机驱动电路设计中的各种潜在问题,并基于25D60-24A 直流电机设计实现了一款新的驱动电路。该电路具备大功率输出及强大的抗干扰能力,拥有广阔的应用前景。 文章中提到的这款电路使用NMOS场效应管作为主要的功率输出元件,成功构建了较大规模直流电机H桥驱动系统,并对额定电压为24伏、电流为3.8A 的25D60-24A 直流电机实现了闭环控制。这种设计具有强大的抗干扰能力,在工业控制系统中显示出极高的适用性。 尽管市面上有许多半导体公司推出了专门用于直流电机的驱动芯片,但大多数仅适用于小功率应用场合。对于大功率需求的应用来说,这些集成芯片的价格通常非常高昂。
  • STM32步H控制图及源码-
    优质
    本项目提供了一个基于STM32微控制器的步进电机H桥驱动控制方案,包括详细的电路设计和源代码。该设计适用于需要精确位置控制的应用场景,如自动化设备、机器人等。 STM32F103VCT6结合步进电机L6205 H桥驱动控制的开源资料分享了关于STM32步进电机驱动程序的知识点: 1. 基本的程序架构:了解哪些内容应放置在主函数(MAIN)中,而哪些部分应在中断处理中实现。 2. STM32与DMX512接收或RS485通信的相关编程。 3. 光电编码器的应用程序编写;若无此硬件条件,则可采用开环控制方法进行替代操作。 4. FSMC TFT驱动程序的开发,包括带菜单功能的设计实现。 5. 步进电机细分驱动、矢量控制及加减速调节技术,并介绍PWM斩波式驱动方式的应用实践。 6. 多个定时器的操作技巧,涵盖PWM信号生成方法以及外部中断输入处理策略;同时涉及串口中断机制与长短按键操作的实现细节。 7. 学习如何通过printf和TFT LCD进行调试程序的方法。
  • MOSH原理
    优质
    本文章介绍MOS管H桥电路的工作原理及其在电机驱动领域的应用,详细解析了如何通过控制信号实现电机正反转和调速。 电机驱动-MOS管H桥原理及其详细电路图与分析介绍的是如何利用MOS管构建一个高效的H桥电路来实现对直流电机的正反转控制。这种设计不仅能够有效提高系统的响应速度,还能在很大程度上降低能耗,是现代电子设备中不可或缺的一部分。 对于详细的电路布局和工作流程解析,该主题深入探讨了每一个元件的功能及其相互之间的连接方式,并提供了具体的应用示例以帮助读者更好地理解和掌握相关技术细节。通过这种方式,学习者可以全面了解如何使用MOS管来构建一个稳定且高效的电机驱动系统。
  • H
    优质
    本项目专注于设计一种高效的步进电机H桥驱动电路,旨在提高电机控制精度与效率。通过优化电路结构,实现对步进电机更精准、灵活的操控,适用于各种自动化控制系统中。 步进电机H桥驱动电路设计涉及将电源电压转换为适合步进电机工作的电流和方向控制信号的过程。这种电路通常包括四个开关元件(如MOSFET或晶体管)构成的H形结构,用于正向和反向切换电流流向以实现对步进电机的位置、速度等精确控制。
  • IR2184H
    优质
    本简介介绍了一种基于IR2184芯片的H桥驱动电路设计方案。该方案详细描述了如何利用IR2184实现高效、可靠的电机控制,适用于多种直流电机应用场合。 每个H桥包含4个MOS管,采用双驱电路设计,并配备了隔离电路和过流保护电路。