Advertisement

关于非线性分数规划的研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
《关于非线性分数规划的研究》一文深入探讨了非线性分数规划的基本理论与应用方法,分析了优化算法及其在实际问题中的应用价值。 非线性分数规划是优化算法中的一个重要领域,其中1967年发表的一篇经典论文对该领域的研究产生了深远的影响。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 线
    优质
    《关于非线性分数规划的研究》一文深入探讨了非线性分数规划的基本理论与应用方法,分析了优化算法及其在实际问题中的应用价值。 非线性分数规划是优化算法中的一个重要领域,其中1967年发表的一篇经典论文对该领域的研究产生了深远的影响。
  • 线.pdf
    优质
    《非线性分数规划》是一篇探讨优化理论中复杂比例目标函数处理方法的研究论文,聚焦于开发解决此类问题的新算法和策略。 上传一篇较早的论文《非线性分数规划》,需要的可以尽快拿走。
  • 线线插值函
    优质
    本研究探讨了线性和非线性插值函数的特点与应用,分析了它们在数据预测和曲线拟合中的优劣,并提出改进方法。 关于线性非线性的插值函数的资料还是不错的,适合用来完成作业任务。
  • MATLAB混合整线资料包.zip_整线_混合整_混合整_混合线_线
    优质
    本资料包提供了关于MATLAB中处理混合整数非线性问题的资源,涵盖混合整数、纯整数与连续变量结合的非线性和线性规划案例。 用于混合整数的非线性规划以及相应的计算程序可以解决包含连续变量和离散变量的复杂优化问题。这类方法在处理实际应用中的各种限制条件时表现出色,能够有效地寻找最优解或近似最优解。
  • 线(Nonlinear Programming)
    优质
    非线性规划是数学优化的一个分支,专注于处理目标函数或约束条件为非线性的最优化问题。它广泛应用于工程、经济等领域中复杂系统的建模与求解。 《非线性规划》(Bertsekas D. 第2版)是学习优化理论与算法的经典教材,深入学习优化算法的必备图书。
  • 线问题
    优质
    非线性规划问题是运筹学的一个分支,涉及在非线性的约束条件下寻找目标函数的最大值或最小值。这类问题广泛应用于工程设计、经济管理和科学实验等领域,具有重要的理论和实践价值。 经典非线性规划教材《Nonlinear programming 2ed》提供了深入的理论分析和实用算法,是该领域的权威参考书之一。书中涵盖了从基础概念到高级主题的内容,并且包含了大量的示例与练习题,有助于读者更好地理解和应用非线性优化技术。
  • 线和01模型
    优质
    本课程聚焦于非线性与0-1整数规划的核心理论及应用,涵盖模型构建、算法设计及其在工程、金融等领域的实践案例。 代码非常清晰,并对非线性规划和01规划做了详细的解释。
  • 混合整线(MINLP)
    优质
    简介:混合整数非线性规划(MINLP)是一种优化问题类型,结合了连续变量与离散(整数或二进制)变量,用于解决复杂的工程设计、资源配置等问题。 求解混合整数非线性问题: 最小化 p(x,y) 约束条件: - f(x,y) <= 0 - g(x,y) == 0 - lb <= x <= ub - nlb <= y <= nub 其中,x(yidx) 是整数变量,y 是连续变量。此程序采用分支定界法来解决非线性混合整数问题,并使用 IPOPT 或 APOPT 求解 NLP 松弛问题。 文件: - minlp.m - 示例 MINLP 问题的求解 - minlp.apm - 定义 MINLP 问题 后续工作可能包括添加启发式方法以创建良好的初始整数值,以及实施分支和切割技术。
  • 放大器线失真装置
    优质
    本研究装置专注于分析和测试放大器在不同工作条件下产生的非线性失真问题,旨在通过精确测量与算法优化来提升音频及通信系统的信号质量。 本非线性研究装置主要包括晶体管放大电路、偏置分压电路、信号调理电路以及单片机四个部分。通过晶体管放大电路对微弱的信号进行放大,得到幅值为1.68V的正弦波,并在第二级放大过程中调整不同的静态工作点和放大倍数以获得正常波形及三种不同类型的失真波形信号;同时利用交越信号产生电路生成交越信号。调理电路则将输出电压偏置至正值且限制在3.3V以内,确保单片机的安全性不受损害。最后,通过单片机的定时AD采样和快速傅里叶变换得到基波及高次谐波幅值,并计算出晶体管放大电路的总谐波失真度。
  • 放大器线失真仿真
    优质
    本研究探讨了放大器在不同工作条件下的非线性失真现象,并通过仿真技术分析其产生的原因及影响,旨在优化放大器的设计与性能。 好的,请提供您需要我重新写的文字内容。