Advertisement

XL4015驱动的降压电源模块电路设计方案(包含pcb和原理图)。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过采用XL4015芯片,该设备能够处理8至36伏特的电压输入,并提供可灵活调节的输出电压,同时具备高达5安培的电流输出能力。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于XL4015PCB
    优质
    本设计提供了一种基于XL4015芯片的高效降压电源模块解决方案,包括详细的电路原理及PCB布局图,适用于多种电子设备。 使用XL4015芯片可以实现8至36伏特电压输入,并且输出电压可调,最大电流可达5安培。
  • MP1584分享,PCB文件-
    优质
    本资料提供MP1584电源模块降压电路设计方案,包含详细的原理图与PCB源文件。适合工程师深入学习和项目参考使用。 本设计基于MP1584芯片电源模块的降压型典型应用电路进行开发,并提供了原理图及PCB源文件(使用AD软件打开)。该芯片采用贴片8脚封装,工作电压范围为4.5至28V,频率为1.5MHz,输出电流可达3A。通过在MOS管Q上施加PWM开关信号来控制其导通与关断状态,从而使电感和电容充放电以实现电源的降压功能。MP1584芯片内部具备短路保护机制,当发生短路时阈值为4.87A,在过载情况解除后能够立即恢复工作。 经过实测验证:在输入电压26.3V的情况下,该模块可以稳定输出5V/3A的电力,并且带负载运行五分钟后的温升约为35°C。MP1584电源模块适用于多种应用场景,包括DIY移动电源、监控系统供电、儿童车电源、摄像头供电以及车载设备等;此外,在对体积和重量有严格要求的应用场合中(例如航空模型),它同样表现出色。
  • APW7137升PCB)-
    优质
    本项目提供了一套详细的APW7137升压模块设计方案,包括完整的电路原理图及PCB布局文件。适合需要高效电源管理的电子设备应用。 项目目前处于样品制作阶段,后续会继续更新相关信息。
  • TPS40192大BOM表)-
    优质
    本项目详细介绍TPS40192大电流降压模块电路的设计,包括详尽的原理图及物料清单(BOM),适用于需要高效电源管理的应用场景。 TPS40192DRCR(C14972)模块的输入和输出采用接线柱形式连接。其工作参数如下:输入电压范围为8-18V,推荐使用12V;输出电压固定在5V,并可提供最大10A电流,设计负载为6A。 TPS40192是一款成本优化型同步降压控制器,支持的输入电压范围是4.5至18伏特。这款芯片采用的是电压模式控制架构,具备固定的开关频率600kHz(对于TPS40192而言)。由于其较高的工作频率有助于减小电感器和输出电容器尺寸,因此能够实现更为紧凑的电源解决方案设计。此外,该控制器还配备了自适应抗交叉传导功能以防止功率场效应晶体管中的直通电流问题发生。
  • TPS54360 MAXIN60V VOUT12.5V 3.5A (PCB+)-解决
    优质
    本方案提供了一种基于TPS54360芯片的高效降压模块设计方案,输入电压范围可达60V,输出设定为12.5V/3.5A。包括完整PCB布局及原理图,适用于各种电源转换需求。 TPS54360降压模块 MAXIN60V VOUT12.5V 3.5A(pcb+原理图)-电路方案 提供了一个关键信息,即该设计涉及一个使用TPS54360的DC-DC降压转换器。它能够处理最高60V的输入电压,并能提供稳定的12.5伏特输出电压,在满载时电流可达3.5安培。这个模块是电子工程中电源管理的一个实例,特别适用于需要从高电压源转换为较低电压以驱动各种电子设备的应用。 DC降压模块 MAXIN60V VOUT12.5V 3.5A进一步强调了转换器的输入和输出规格。它通常用于将较高的直流电压降低到设备所需的合适电压水平,这里的MAXIN60V指定了输入电压的最大值,而VOUT12.5V 3.5A表明该模块能稳定提供12.5伏特的电压,并且在满载时可以输出3.5安培的电流。 降压模块 tps54360 电路方案 提示我们关注的重点是TPS54360芯片,这是一个德州仪器(TI)出品的高效同步降压转换器。这种芯片常用于电源管理中,因为它能提供高效率的电压转换并具有良好的负载调整率。该设计可能包括了详细的PCB布局和原理图信息。 此电路方案基于TPS54360,并且是一种高效的电源管理解决方案,适用于需要从最高达60V的输入电压转换到12.5伏特输出并且电流需求较大的应用场合。提供的资源包括详尽的设计文件,如原理图和PCB布局数据,帮助工程师理解和实施这样的电源转换系统。对于那些想要学习电源设计或在项目中应用类似转换器的人来说,这是一个宝贵的参考资料。
  • MPU6050PCB
    优质
    本项目提供了一套详细的MPU6050六轴运动跟踪传感器模块电路设计,包括完整的原理图及PCB布局文件,适用于各类运动检测应用。 该模块是MPU6050模块,它由三轴加速度计和三轴陀螺仪组成一个六轴传感器。对于对此内容感兴趣的用户可以加入航模相关DIY交流群以进行更深入的讨论与学习,共同进步。不过请注意,这里没有提供具体的联系方式或链接信息。
  • TPS630701 自+BOM表-
    优质
    本资料深入解析TPS630701自动升降压模块的设计理念和工作原理,并提供详尽的电路图及物料清单(BOM),适用于电源管理项目的工程师。 TPS630701是一款高效降压-升压转换器DC-DC芯片,具有低静态电流特性。其型号为TPS630701RNMT(C181473),输入与输出采用端子块形式连接。该芯片的输入电压范围是2.0V至16V,而固定输出电压则设定在5V,并能提供高达1A的输出电流。PCB设计依据TPS63070标准制作,确保兼容性良好。作为一款固定输出模型,其反馈端FB的设计直接连接上下臂之间。该芯片的最大效率可达到95%。
  • THB6128步进
    优质
    本项目详细介绍THB6128步进电机驱动模块的单路驱动电路设计方案,包括详细的电气原理图和关键参数设置说明。 步进电机驱动模块THB6128单路驱动。
  • BME280气温度湿度传感器PCBBME280库)-
    优质
    本项目提供了BME280气压、温度及湿度传感器模块的设计,包括详细的原理图、PCB布局以及驱动程序和传感器库文件。 艾尔赛BME280大气压强传感器模块支持I2C和SPI通信协议,并集成了温湿度传感器与压力传感器。该产品具有高灵敏度、体积小巧及低功耗的特点。 **产品特性:** - 感测大气压强,能够测量环境中的气压。 - 测量温度和湿度数据。 - 工作电压范围为3.3V至5V之间。 **BME280模块参数详情如下:** *温湿度传感器* 响应时间(τ63%):1秒 精度容差:± 3%相对湿度 滞后性:≤ 2% 相对湿度 *压力传感器* 测量范围:300 至 1100 hPa(相当于海拔高度-500米至+9,000 米) 相对准确性:± 0.12 hPa,等同于 ± 1m (在950 到 1,050hPa 和温度为25°C时) 绝对准确性:典型值 ± 1 hPa(适用于气压范围950至1,050 hPa和环境温度从-40到+65摄氏度) *温传感器* 操作范围:-40℃ 至 +85℃ 全精度范围:0°C 到 +65°C *数字接口:* I²C(最高3.4MHz)/ SPI(三线或四线,可达10 MHz) 电流消耗量:2.7μA @ 1 Hz采样率
  • 4可控硅与实现(PCB)-
    优质
    本项目详细介绍了4路可控硅模块电路的设计过程,包括工作原理、硬件选型及原理图和PCB布局。通过该设计方案,可以轻松实现对多路电源的高效控制。 《四路可控硅模块电路设计方案详解》 在电子工程领域,可控硅模块是常见的功率控制元件,在电源调压、电机控制等领域有着广泛应用。本段落将深入解析一款4路可控硅模块的电路设计方案,包括其原理图和PCB设计,帮助读者理解和应用这类电路。 一、可控硅基本概念 可控硅是一种半导体器件,具有三个PN结结构,能够实现电流的无级调控功能。与普通二极管相比,在适当的触发条件下可以保持导通状态,并且即使去除触发信号也能维持这种状态,因此在电路中起到开关作用。 二、4路可控硅模块设计原理 4路可控硅模块通常由四个独立的可控硅单元组成,每个单元都能单独控制一路电流。每个可控硅单元包括一个主控元件以及相关的驱动和保护电路。驱动电路负责为可控硅提供触发脉冲使其开启;而保护电路则在异常情况下(如过电压、过流)确保器件的安全。 1. 原理图分析 根据提供的原理图,我们可以看到4个可控硅TR1至TR4并联连接,每一路都有独立的控制输入端(G、K),以及共阳极(A)和共阴极(C)。G与K之间通过电阻和电容构成触发电路,在适当脉冲电压作用下使可控硅导通。此外,电路中可能还包括热敏电阻或熔断器作为过温保护。 2. PCB设计要点 PCB设计对于保证模块的稳定性和可靠性至关重要。良好的布局可以减少寄生参数、提高工作效率,并防止电磁干扰的发生。在设计过程中需要注意以下几点: - 尽量缩短大电流路径,降低线路电阻以减小功率损耗。 - 控制信号线应远离高电压和大电流线路以防耦合干扰。 - 可控硅与散热片之间需保持良好的电气及热接触以便于散热。 - 保护电路元件的位置安排合理,在异常情况下可以快速响应。 三、实际应用与注意事项 4路可控硅模块广泛应用于多通道电源调节、照明控制和电机调速等领域。使用时需要注意以下几点: - 触发脉冲的频率和宽度需满足可控硅的工作要求,避免误触发或不触发。 - 模块的额定电流和电压应大于实际工作需求以确保足够的安全余量。 - 安装过程中要保证良好的散热条件防止过热导致器件损坏。 - 使用期间需要定期检查及时发现并解决潜在问题。 总结来说,4路可控硅模块通过巧妙设计实现了对多路负载独立控制。理解其工作原理和PCB设计有助于我们在实际项目中更高效地应用这一技术,从而提升系统性能及稳定性。