本研究采用多元ARMA-GARCH模型探讨金融市场中的波动性,通过结合自回归移动平均与广义自回归条件异方差方法,提供更精确的风险评估工具。
多元ARMA-GARCH模型的波动率估计涉及多种统计学与金融数学概念。自回归滑动平均(Autoregressive Moving Average, ARMA)模型结合了自回归(AR)和移动平均(MA)模型,通过变量与其历史值及随机误差项的历史值之间的关系预测时间序列数据。广义自回归条件异方差(Generalized Autoregressive Conditional Heteroskedasticity, GARCH)模型用于估算金融时间序列的波动性,在金融市场中应用广泛。当GARCH模型应用于多元时间序列时,称为多元GARCH模型。
多元ARMA-GARCH结合了ARMA和多元GARCH的特点,以描述并预测具有自回归与移动平均特性的多资产价格波动及其联动关系。此模型尤其适用于分析股票、债券等金融工具的价格变动特征及相互影响。
独立成分分析(Independent Component Analysis, ICA)是一种揭示多变量信号或数据中各个独立组成部分的技术,在多元ARMA-GARCH框架下,ICA用于分离时间序列中的独立波动部分,以更准确地估计和解析各组分的特性。因果结构在统计模型中表示变量间的相互影响关系,特别是在时间序列分析里,它有助于解释通过滞后效应彼此影响的关系。确定多元ARMA-GARCH模型中的因果结构可帮助研究者识别内生与外源因素。
波动率衡量金融资产价格变动的风险程度,通常用标准差或方差来量化,在金融市场中代表未来价格变化的不确定性。准确估计波动率对风险管理(如计算风险价值VaR)和衍生品估值至关重要。多元ARMA-GARCH模型用于捕捉复杂且动态的价格波动模式与聚集效应,即大价变对应高波幅、小价变则低波幅。
鉴于金融时间序列数据的复杂性及变化性,有效的多资产波动率建模工具需能准确反映异方差特性,并适应市场结构变动。多元ARMA-GARCH模型为分析师和投资者提供精确的风险评估手段,从而支持更加科学的投资决策。