Advertisement

MATLAB微分方程组求解代码-NMPDE:偏微分方程的数值方法(MATHF422-BITSPilani)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本项目提供了使用MATLAB解决偏微分方程的数值方法的代码,适用于MathF422课程,涵盖差分解法、稳定性分析等内容。由 BITS Pilani 教授和学生共同开发维护。 MATLAB优化微分方程组代码(以聚偏二氟乙烯为例) 本课程涵盖了偏微分方程的数值方法(MATH F422-BITS Pilani)。如何使用此仓库: 1. 导航至与您要解决的问题相关的文件夹。 2. 克隆整个文件夹,而不仅仅是主.m文件,因为应该存在关联的功能。 3. 在MATLAB中正常运行代码,并根据需要更改初始函数和确切的函数。 注意事项: - 因为方程不同,请在方案中进行相应的调整。 - 根据维度中的步长调整mu值(N代表行数,M表示列数)。 NMPDE是BITS Pilani大学提供的一门课程,内容包括使用数值FD方案求解偏微分方程以及研究其各自的稳定性和收敛阶数。涵盖的几种方法有:FTCS、BTCS、Crank-Nicolson法、用于2D抛物线PDE的ADI方法(交替方向隐式)、Theta方案、Thomas算法,Jacobi迭代方法和Gauss-Siedel方法。 到目前为止,我们已经介绍了物理学中通常遇到的抛物型方程、椭圆型方程以及双曲线形偏微分方程。在处理双曲线PDE时,我们会遇到1D波方程及Burgers方程。 对于这些情况,使用了以下方案: - Friedrichs Lax-Wendroff - 上游法(Upwind Scheme) - 蛙跳方法(Leapfrog Method) - Crank-Nicolson 法 - 松弛的Lax-Wendroff 方案 - Godunov 方法

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB-NMPDEMATHF422-BITSPilani
    优质
    本项目提供了使用MATLAB解决偏微分方程的数值方法的代码,适用于MathF422课程,涵盖差分解法、稳定性分析等内容。由 BITS Pilani 教授和学生共同开发维护。 MATLAB优化微分方程组代码(以聚偏二氟乙烯为例) 本课程涵盖了偏微分方程的数值方法(MATH F422-BITS Pilani)。如何使用此仓库: 1. 导航至与您要解决的问题相关的文件夹。 2. 克隆整个文件夹,而不仅仅是主.m文件,因为应该存在关联的功能。 3. 在MATLAB中正常运行代码,并根据需要更改初始函数和确切的函数。 注意事项: - 因为方程不同,请在方案中进行相应的调整。 - 根据维度中的步长调整mu值(N代表行数,M表示列数)。 NMPDE是BITS Pilani大学提供的一门课程,内容包括使用数值FD方案求解偏微分方程以及研究其各自的稳定性和收敛阶数。涵盖的几种方法有:FTCS、BTCS、Crank-Nicolson法、用于2D抛物线PDE的ADI方法(交替方向隐式)、Theta方案、Thomas算法,Jacobi迭代方法和Gauss-Siedel方法。 到目前为止,我们已经介绍了物理学中通常遇到的抛物型方程、椭圆型方程以及双曲线形偏微分方程。在处理双曲线PDE时,我们会遇到1D波方程及Burgers方程。 对于这些情况,使用了以下方案: - Friedrichs Lax-Wendroff - 上游法(Upwind Scheme) - 蛙跳方法(Leapfrog Method) - Crank-Nicolson 法 - 松弛的Lax-Wendroff 方案 - Godunov 方法
  • MATLAB_PDE_ZIP__pde_
    优质
    本资源提供利用MATLAB求解偏微分方程(PDE)的工具包和示例代码,涵盖各类偏微分方程组的数值解法。通过PDE Toolbox, 用户可以便捷地设置、求解并可视化二维几何中的静态及时间依赖性偏微分方程问题。 偏微分方程组的求解可以通过编写偏微分代码直接进行。
  • 利用Matlab
    优质
    本教程详细介绍如何使用MATLAB软件高效求解常微分方程(ODE)及偏微分方程(PDE),适合工程和科学领域的学习者。 Matlab可以用来求解微分方程(组)及偏微分方程(组)。
  • Matlab常见序-_序.rar
    优质
    本资源提供了在MATLAB环境下求解各类偏微分方程数值解的常用程序,涵盖多种算法和应用实例,适合科研与工程计算。 Matlab偏微分方程的数值解法常用程序-偏微分方程的数值解法_程序.rar包含了解决一些偏微分方程问题的常用代码,希望能对大家有所帮助,欢迎下载!
  • 椭圆
    优质
    本研究探讨了椭圆偏微分方程的有效数值求解策略,涵盖多种算法及其应用,旨在提高计算效率与精度。 5.1 五点菱形差分法 5.2 九点紧差分方法 5.3 椭圆微分方程在混合边界条件下的差分法
  • MATLAB(PDEs).pdf
    优质
    本PDF文档深入探讨了利用MATLAB软件求解偏微分方程(PDEs)的各种数值方法,包括有限差分法、有限元法等,并提供了实际编程示例。适合科研人员与工程师学习参考。 偏微分方程(PDEs)的MATLAB数值解法涉及使用MATLAB软件来求解各种形式的偏微分方程。这种方法通常包括选择合适的数值方法(如有限差分、有限元或谱方法),以及利用MATLAB提供的工具箱和函数库进行实现。通过这些技术,可以有效地模拟物理现象、工程问题以及其他科学领域的复杂系统行为。
  • Matlab-Partial-differential-equation-solver:
    优质
    本项目提供了一个基于MATLAB开发的偏微分方程求解工具。用户可以利用该工具高效地解决各类物理和工程问题中的偏微分方程,简化科研与学习过程。 这段MATLAB代码用于可视化存在振动欧拉梁时流体域的压力和速度场。求解器使用有限差分法来求解梁的四阶微分方程。流体是根据分析推导实现,并与结构振动耦合。
  • MATLAB离散差
    优质
    本文介绍了在MATLAB环境下利用离散差分法数值求解偏微分方程的方法和技术,包括常用差分格式和实现步骤。 在使用MATLAB求解偏微分方程时,可以将偏微分方程转换为常微分方程并通过调用ode函数来解决,也可以采用离散差分法结合迎风格式进行迭代求解以获得数值解。这两种方法各有优缺点,在选择合适的方法时需要根据具体问题的需求和特性来进行判断。
  • MATLAB
    优质
    本简介探讨在MATLAB环境下解决偏微分方程(PDE)的各种策略与技巧,包括内置函数的应用、数值方法的选择以及编程实现。 非稳态偏微分方程组是一个较为复杂的难题,在热质交换等领域经常遇到。因此,需要开发一套程序来求解这类问题的数值解。
  • 优质
    《偏微分方程的数值解法》一书深入浅出地介绍了求解偏微分方程的各种数值方法,包括有限差分法、有限元法等,适用于科研人员及高校师生阅读。 偏微分方程数值解涵盖了椭圆形方程、抛物型方程以及双曲型方程。