
Finite Element Method and Boundary Element Method - Hunter
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
Finite Element Method and Boundary Element Method - Hunter是一本全面介绍有限元法和边界元法理论与应用的专业书籍,适用于工程分析与设计。
### 有限元方法与边界元方法
#### 一、有限元基础函数
##### 1.1 一维场表示
有限元方法(FEM)是一种数值解法,用于求解复杂的工程问题,特别是在结构分析和热传导等领域。在处理一个连续的一维函数时,我们通常采用一系列线性或高阶多项式基函数来近似该函数。
##### 1.2 线性基函数
在线性近似中,每个节点定义了一个基函数,在其上取值为1,并且其他所有节点上的值为0。通过这种设置,我们可以用两个相邻节点的线性组合来表示两点之间的变化情况。例如,在一维空间中,如果两个节点间的距离是h,则可以使用以下公式:φ1(x) = (x2 - x)/h 和 φ2(x) = (x - x1)/h ,其中x1和x2分别是这两个节点的位置坐标。
##### 1.3 基函数作为权重函数
基函数不仅用于表示场变量,也可以在弱形式的构建中用作加权函数。通过将微分方程转换为积分的形式,并利用这些基函数(即权重函数)进行加权处理,可以得到更稳定的数学模型。
##### 1.4 二次基函数
随着问题复杂性的增加,需要使用更高阶的多项式来逼近未知场变量。例如,在曲率变化较大的情况下,采用二次或更高的多项式作为基函数能够提供更好的近似效果。
##### 1.5 二维和三维元素
在处理更复杂的几何形状时(如弯曲面),我们需要考虑二维甚至三维的情况。此时,单元的选择会更加复杂,包括三角形、四边形等不同类型的多边形单元,并且每个单元内部的场变量表示依然通过基函数来完成。
##### 1.6 高阶连续性
在某些应用中,为了提高精度和准确性,要求相邻单元之间不仅场变量本身要保持连续,其导数也要保持一致。这种高阶连续性的实现需要更复杂的数学处理方法。
##### 1.7 三角形单元
三角形单元是二维有限元分析中最常用的元素之一。它具有三个节点,并且可以使用线性基函数来表示单元内部的场变量变化情况,从而适应各种复杂几何形状的要求。
##### 1.8 曲线坐标系
对于处理弯曲或非规则表面的问题时,曲线坐标系统提供了更好的解决方案。在这种情况下,选择适当的曲率相关的基函数能够显著提高计算精度和效率。
#### 二、稳态热传导
##### 2.1 一维稳态热传导
一维稳态热传导问题是一个经典的有限元分析案例。它涉及到温度分布随位置变化的描述,在这种条件下时间被视为常数不变量。首先需要建立一个微分方程,然后通过将其转换为弱形式来求解各节点上的温度值。
##### 2.2 α-依赖源项
当热源的位置或者强度随着位置的变化而改变时(即α-依赖性),我们需要在有限元模型中引入相应的处理机制以适应这种变化情况,并调整方程中的相应参数。
##### 2.3 伽辽金权函数回顾
在有限元方法的应用过程中,通过使用适当的基函数来最小化残差的方法被称为伽辽金法。这种方法不仅适用于稳态热传导问题,在其他类型的偏微分方程求解中也非常有用。
#### 三、边界元方法
##### 3.1 引言
边界元方法(BEM)是一种数值技术,专注于解决具有明确边界的物理现象。相比有限元方法,它只需要在物体的表面上进行离散化处理,从而减少了计算资源的需求量。
##### 3.2 目录克-德尔塔函数与基本解
目录克-德尔塔函数和基本解是边界元法中的关键概念之一。前者用于表示集中力或源项的影响;后者则是描述该影响下系统的响应情况。
##### 3.3 二维边界元方法
在二维空间中,BEM通过定义物体边界的节点,并使用基函数来表达这些条件来进行计算工作。接着构造相应的积分方程以求解出各个未知量的值。
##### 3.4 数值求解边界积分方程的方法
为了解决由边界元素法产生的线性代数问题,通常需要采用数值方法进行处理,包括直接和间接技术以及特定类型的数值积分方案(如高斯积分)等手段来提高精度与效率。
##### 3.5 数值评价系数矩阵中的项
在BEM中求解过程中会涉及到大量关于边界条件的计算任务。这要求我们使用高效的算法来评估这些复杂的数学表达式,特别是对于那些难以直接解析求解的部分来说更是
全部评论 (0)


