Advertisement

Python中决策树算法的代码实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本篇教程深入浅出地讲解了如何在Python环境中利用scikit-learn库来实现决策树算法,并提供了详细的代码示例和解释。适合编程初学者及数据科学爱好者学习实践。 决策树是一种分析方法,在已知各种情况发生概率的基础上通过构建决策树来计算净现值的期望值大于或等于零的概率,以此评估项目风险并判断其可行性。这种方法直观地运用了概率分析,并因其图形结构类似树木而得名。 在机器学习领域中,决策树是一个预测模型,它表示对象属性与类别之间的映射关系。熵是衡量系统混乱程度的一种度量方法,在算法ID3、C4.5和C5.0生成的树形图中使用这种度量方式来构建决策树。这些算法基于信息理论中的熵概念。 决策树是一种结构化的图形表示,其中每个内部节点代表一个属性测试;每条边则对应着该测试的一个可能结果;而每一个叶结点则代表着一种类别或者最终预测的结果。 分类树(即决策树)是广泛使用的一种分类方法。它属于监督学习范畴:给定一些样本数据,这些数据包括一组特征和已知的类别标签。通过训练得到一个能够对新输入的数据进行准确分类的模型或算法的过程就是所谓的“监督学习”。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Python
    优质
    本篇教程深入浅出地讲解了如何在Python环境中利用scikit-learn库来实现决策树算法,并提供了详细的代码示例和解释。适合编程初学者及数据科学爱好者学习实践。 决策树是一种分析方法,在已知各种情况发生概率的基础上通过构建决策树来计算净现值的期望值大于或等于零的概率,以此评估项目风险并判断其可行性。这种方法直观地运用了概率分析,并因其图形结构类似树木而得名。 在机器学习领域中,决策树是一个预测模型,它表示对象属性与类别之间的映射关系。熵是衡量系统混乱程度的一种度量方法,在算法ID3、C4.5和C5.0生成的树形图中使用这种度量方式来构建决策树。这些算法基于信息理论中的熵概念。 决策树是一种结构化的图形表示,其中每个内部节点代表一个属性测试;每条边则对应着该测试的一个可能结果;而每一个叶结点则代表着一种类别或者最终预测的结果。 分类树(即决策树)是广泛使用的一种分类方法。它属于监督学习范畴:给定一些样本数据,这些数据包括一组特征和已知的类别标签。通过训练得到一个能够对新输入的数据进行准确分类的模型或算法的过程就是所谓的“监督学习”。
  • PythonID3
    优质
    本段落介绍如何使用Python编程语言来构建和应用基于信息增益原则的ID3决策树机器学习模型。 本段落实例展示了如何用Python实现ID3决策树算法,供参考。 创建日期:2015年1月30日 作者:史帅 ```python from math import log import operator import re def fileToDataSet(fileName): # 此方法功能是从文件中读取样本集数据。样本数据的格式为:每行以空白字符分割,最后一列为类标签。 # 参数: fileName - 存放样本集数据的文件路径。 # 返回值: dataSet - 样本集数据组成的二维数组。 ```
  • Python
    优质
    本文章介绍了如何在Python编程语言中实现决策树算法,详细讲解了决策树的工作原理、构建方法以及实际应用案例。 数据集:Mnist训练集数量:60000 测试集数量:10000 运行结果: ID3(未剪枝) 正确率:85.9% 运行时长:356s ```python import time import numpy as np def loadData(fileName): # 加载文件 dataArr = []; labelArr = [] fr = open(file) ``` 重写后的代码删除了不必要的注释和未完成的函数定义。保留了原始描述中的关键信息,同时保持格式整洁。
  • PythonID3
    优质
    本文将介绍如何使用Python编程语言实现经典的ID3决策树算法,涵盖算法原理、代码实践及应用案例。 本段落详细介绍了如何用Python实现ID3决策树算法,并具有一定的参考价值。对这一主题感兴趣的读者可以查阅相关资料进行学习。
  • PythonID3
    优质
    本项目通过Python编程语言实现了经典的机器学习算法——ID3决策树,并基于实际数据集进行模型训练与效果验证。 本段落详细介绍了如何用Python代码实现ID3决策树算法,并提供了有价值的参考内容。对这一主题感兴趣的读者可以查阅此文以获取更多信息。
  • PythonID3
    优质
    本篇教程提供了一个详细的Python实现决策树ID3算法的实例代码。通过具体案例讲解了如何使用Python编写和应用ID3算法进行数据分类。适合对机器学习感兴趣的初学者学习实践。 在机器学习领域内,决策树是一种常用的分类算法。ID3算法基于信息增益的原理来构建决策树,并利用熵作为指标选择特征。以下是关于Python实现ID3算法相关知识点的详细介绍。 首先需要了解的是信息熵的概念。这是度量数据集纯度的一种方式,在决策树中用于评估给定数据集的分类质量,值越小表示分类效果越好。公式如下: \[ Entropy(S) = -\sum_{i=1}^{n} p_i \log_2(p_i) \] 其中\(S\)是整个样本集合,\(p_i\)代表第\(i\)类在数据集中的比例。 接下来介绍如何计算香农熵。这是ID3算法的基础步骤之一。以下是一个用于计算给定数据集中香农熵的Python代码片段: ```python from math import log def calculate_entropy(data): label_counts = {} for feature_data in data: label = feature_data[-1] # 最后一行是标签值 if label not in label_counts.keys(): label_counts[label] = 0 label_counts[label] += 1 count = len(data) entropy = 0.0 for key in label_counts: prob = float(label_counts[key]) / count entropy -= prob * log(prob, 2) # 计算香农熵值 return entropy ``` 在ID3算法中,信息增益是选择特征的关键依据。它衡量了知道某个特征后能够提升数据集纯度的程度。其计算公式如下: \[ Gain(S, A) = Entropy(S) - \sum_{t\in T} \frac{|S_t|}{|S|}Entropy(S_t) \] 其中\(S\)是整个样本集合,\(A\)表示某个特征,而\(T\)则是根据特征的不同取值划分出的子集。 接下来是一个计算特定特征信息增益的示例代码: ```python def calculate_relative_entropy(data, index, entropy): feat_list = [number[index] for number in data] unique_vals = set(feat_list) new_entropy = 0.0 for value in unique_vals: sub_data = split_data(data, index, value) # 分割数据集 prob = float(len(sub_data)) / len(data) new_entropy += prob * calculate_entropy(sub_data) # 对每个子集的香农熵求和 relative_entropy = entropy - new_entropy # 计算信息增益值 return relative_entropy ``` 在构建决策树的过程中,我们需要根据信息增益来选择特征,并对数据进行划分。选取具有最大信息增益的特征用于分割是ID3算法的一个核心步骤。以下是选择最大信息增益特征的示例代码: ```python def choose_max_relative_entropy(data): num_feature = len(data[0]) - 1 # 数据集中特征的数量 base_entropy = calculate_entropy(data) # 计算香农熵值 best_infor_gain = 0.0 best_feature = -1 for i in range(num_feature): info_gain = calculate_relative_entropy(data, i, base_entropy) if info_gain > best_infor_gain: best_infor_gain = info_gain best_feature = i return best_feature # 返回具有最大信息增益的特征索引值 ``` 最后一步是递归构建决策树。根据选择的信息增益最高的特征将数据集划分,并对每个子集重复执行相同的过程,直到所有可用特征都已被用于分割或某个类别占主导地位时停止。 ```python def create_decision_tree(data, labels): class_list = [example[-1] for example in data] if len(set(class_list)) == 1: # 类别完全一致则停止划分 return class_list[0] if len(labels) == 1: return most_common_class(class_list) best_feat = choose_max_relative_entropy(data) best_feat_label = labels[best_feat] decision_tree = {best_feat_label: {}} del(labels[best_feat]) feat_values = [example[best_feat] for example in data] unique_vals = set(feat_values) for value in unique_vals: sub_labels = labels[:] decision_tree[best_feat_label][value] = create_decision_tree(split_data(data, best_feat, value), sub_labels) # 递归构建子树 return decision_tree ``` 通过以上步骤,我们可以实现决策树ID3算法。需要注意的是,ID3算法仅适用于离散型特征,并且由于使用了信息增益的计算方法,它可能倾向于选择取值多的特征。此外,在实际应用中,为了避免过拟合问题的发生,通常需要对生成的模型进行剪枝
  • PythonID3.txt
    优质
    本文件探讨了在Python编程语言环境中实现经典的ID3决策树算法的方法和技巧,包括数据预处理、模型构建及评估。 第一步:针对每个特征,计算其信息增益。 第二步:选取具有最大信息增益的特征来分裂决策树,并递归地进行这一过程。 第三步:解码构建好的决策树以实现分类功能。 以上步骤使用了numpy库以及自定义函数来计算交叉熵、信息增益和创建决策树。
  • Python三种经典.rar__ Python_经典
    优质
    本资源详细介绍并实现了三种经典的决策树算法,包括ID3、C4.5和CART。通过Python编程语言进行代码演示与分析,适合机器学习初学者参考学习。 决策树是一种广泛应用于数据挖掘和机器学习的非线性预测模型,它通过模拟人类决策过程来做出预测。“决策树三种经典算法实现”压缩包中可能包含Python代码,介绍了三种主要的决策树算法:ID3、C4.5和CART。以下是这些算法的具体说明: 1. ID3(Iterative Dichotomiser 3): ID3是最早的决策树之一,由Ross Quinlan在1986年提出。该算法使用信息熵和信息增益来选择特征。信息熵衡量数据集的纯度,而信息增益则表示通过选取某个特征划分数据后熵减少的程度。ID3倾向于优先选择包含最多类别信息的特征进行分类,但容易过拟合,并且无法处理连续数值型属性。 2. C4.5: 作为ID3的一个改进版本,C4.5同样由Ross Quinlan开发。它解决了ID3在处理连续属性和缺失值方面的不足。C4.5采用信息增益比来选取分裂点,减少了对连续特征的偏好,并引入了加权信息增益以更好地应对数据中的缺损情况。此外,C4.5生成更为高效的决策规则,因为它基于二元划分而非多叉树。 3. CART(Classification and Regression Trees): CART由Breiman等人提出,适用于分类和回归任务。在分类问题中,CART使用基尼不纯度作为分裂标准;而在回归问题中,则将数据集分割成子集,并为每个子集建立最优线性模型。与ID3和C4.5相比,CART的一个显著优点是生成的决策树结构简单且易于理解。 这些算法在Python中的实现通常会利用scikit-learn库——一个强大的机器学习工具包,提供了各种机器学习方法的接口,包括决策树。压缩包中可能包含导入数据、构建模型、训练和预测的基本步骤代码示例,对于初学者来说是很好的参考资料。 通过深入了解这三种算法的工作原理及其优缺点,在实际应用时可以根据具体的数据集特性和任务需求做出明智的选择。例如,当处理大量连续数值型特征的分类问题时,CART可能是一个更好的选择;而在需要有效管理缺失值的情况下,则更推荐使用C4.5。掌握这些知识有助于在模型调参和优化过程中作出更加合理有效的决策。
  • Python编程C4.5
    优质
    本文章详细介绍了如何在Python中实现C4.5决策树算法,并探讨了其在数据分类和预测任务中的应用。 C4.5算法使用信息增益率来替代ID3算法中的信息增益进行特征选择,解决了在特征值个数较多的情况下,信息增益偏向于选取这些特性的问题。关于信息增益率的定义如下: ```python # -*- coding: utf-8 -*- from numpy import * import math import copy class C45DTree(object): def __init__(self): # 构造方法 self.tree = {} # 生成树结构 self.dataSet = [] # 数据集 self.labels = [] # 标签集合 ``` 这段代码定义了一个名为`C45DTree`的类,它用于构建决策树。初始化函数中包括了三个主要属性:一个空字典(用来存储生成的决策树结构)、一个空列表来存放数据集和另一个空列表用于保存标签信息。
  • Python编程C4.5
    优质
    本文章介绍了如何在Python中使用机器学习库实现C4.5决策树算法,适合对数据挖掘和机器学习感兴趣的读者。通过具体实例讲解了该算法的应用及优化方法。 本段落详细介绍了如何用Python实现C4.5决策树算法,并提供了有价值的参考内容。对这一主题感兴趣的读者可以查阅此文以获取更多信息。