Advertisement

UC384X BOOST升压电路12V至170V电路图+PCB

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本资源提供基于UC384X芯片设计的BOOST升压电路方案,可将输入电压从12V提升至最高170V。附有详细电路图及PCB板布局文件。 UC384X BOOST升压电路用于将12V电压提升至12V到170V之间。该电路图及PCB设计可用于相关应用中。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • UC384X BOOST12V170V+PCB
    优质
    本资源提供基于UC384X芯片设计的BOOST升压电路方案,可将输入电压从12V提升至最高170V。附有详细电路图及PCB板布局文件。 UC384X BOOST升压电路用于将12V电压提升至12V到170V之间。该电路图及PCB设计可用于相关应用中。
  • 5V12V
    优质
    本设计提供了一种高效的5V至12V升压电路方案,适用于多种电子设备中需要电压提升的应用场景。通过优化电路结构与元件选择,实现高效率、低噪音及宽输入电压范围的电源转换功能。 由于电路需要24伏特和5伏特电压,并且每个电压有各自的地线,工作电流达到3安培,在设计并仿真该电路时遇到了问题:单独对两个部分进行仿真都没有问题,但当将它们合并后一起仿真就会出现问题。这是否是因为不同的地导致的呢?仿真的时候出现了错误信息。
  • 3.7V12V大全
    优质
    本资料汇集了从3.7V到12V输入电压范围内的多种升压电路设计,适用于各种电子设备电源转换需求。 C1 的正反馈作用使得当 Q2 导通后迅速进入饱和区。随后 C1 放电并反向充电,在这个过程中,Q1 基极电压升高导致 Q2 基极电流减小,同时 L1 上的电流不断增加。一旦达到足够高的水平使 Q2 退出饱和状态时,C1 的正反馈作用会提高 Q1 的基极电压,从而促使 Q1 和 Q2 迅速回到截止区。
  • 如何设计将5V12VBoost?.docx
    优质
    本文档详细介绍了设计一个能够将输入电压从5V提升到12V的Boost升压电路的方法。通过原理分析、元件选择和电路搭建,为工程师及电子爱好者提供实用指导和技术支持。 为了将5V电压升至12V,推荐使用DC/DC升压芯片SX1308进行设计。该国产芯片体积小、封装简单且外设电路较少。本段落介绍如何利用SX1308实现有效的升压设计。 在展示的实例中,输入电压为5V时,输出电压为稳定的12V,并能提供至少1A的最大输出电流。图示中的XL6009是一款常用的大电流DC-DC升压IC,其推荐工作范围是5~32V,最大可达到35V的输出电压。内置功率MOSFET开关能够处理高达4A的电流,在频率为400KHz时工作。 电路中,XL6009的引脚②作为使能控制端,当悬空时处于高电平状态并正常运行;若将该引脚设为低电平,则IC内部关闭且无电压输出。因此可以通过一个小开关来操控整个升压电路的工作情况。 本设计中,通过调整电阻R1和R2的阻值可以改变输出电压,在图示配置下,当使用标称值分别为10KΩ和330Ω的两个电阻串联代替实际不存在的10.33KΩ电阻时,可确保稳定的12V输出。 此外,推荐选择47μH贴片功率电感作为电路中的L,并配以整流电流为3A的肖特基二极管(如型号1N5822)来增强性能。
  • Buck-Boost斩波
    优质
    本资料详细介绍了Buck-Boost电路和升降压(SEPIC/Cuk)斩波电路的工作原理,并提供了清晰的电路图示例。适合电子工程学习与研究参考。 这段文本主要描述了一个电路设计项目的内容,包括主电路、过流保护、过压保护以及驱动电路的设计,并提到可以使用protel或AD软件打开相关文件进行查看。由于原文中没有具体提及联系方式等信息,因此重写时未做相应修改。 简单来说,该段文字涉及的是一个电子工程项目的描述,项目内容包括了几个关键的电路设计部分和所使用的软件工具。
  • 313、基于BOOST设计的12V36V 3A开关源方案(含原理PCB及仿真
    优质
    本项目介绍了一种基于BOOST拓扑结构的高效升压变换器设计方案,可将输入电压从12V提升到36V,并提供高达3A的输出电流。文档中包含详尽的设计原理、电路布局(PCB)及仿真结果图示,为电源设计工程师提供了实用参考。 基于BOOST设计的升压电路用于将12V直流电压转换为36V输出电压,并提供最大1A的电流(即36W功率)。输入脉宽范围在5V到20V之间,因此该DC-DC开关电源采用Boost拓扑结构进行升压。 Boost升压电路是一种常见的开关式直流电升压方式。它通过控制开关管的导通和关断来调节电感储存与释放能量的过程,从而实现输出电压高于输入电压的效果。这种变换过程又被称为斩波,在实际应用中主要采用脉宽调制(PWM)的方式进行控制。 根据设计需求及Boost电路的特点,可以选择多种集成升压芯片以满足要求。常见的选择包括XL6009、XL6019、MP9185、MC33063A、MP1540/1541以及XC9119和TPS61040等型号的芯片。
  • 15V12V,18V12V源芯片,降
    优质
    本产品是一款高效的降压电源管理芯片,支持从15V到12V及18V到12V的电压转换,适用于各种需要稳定低压输出的应用场景。 15V转12V以及18V转12V的电源芯片适用于大电流(1-5A)的应用场景。根据输入电压的不同选择合适的降压电路是关键。对于从15V或18V转换到12V的情况,推荐采用DC-DC降压电路作为解决方案。
  • DC-DC (Boost)
    优质
    DC-DC升压电路(Boost)是一种开关电源拓扑结构,能够将输入电压提升至更高输出电压,广泛应用于电子设备、LED照明和太阳能系统中。 DC-DC升压转换器的工作原理是通过开关电路将输入电压升高到所需的输出电压水平。这一过程主要依赖于占空比的控制来调节输出电压。 占空比是指开关周期内导通时间与总周期的比例,它是决定输出电压的关键参数。具体来说,在理想情况下,如果忽略所有损耗和效率问题,升压转换器的最大理论增益(即输入到输出的电压比)等于1除以(1-占空比)。 在设计DC-DC升压电路时选择合适的电感值非常重要。电感的选择需要考虑开关频率、最大电流以及所需的纹波大小等因素来确定。较高的开关频率可以减小所需电感器尺寸,但同时也会增加功耗和EMI噪声问题。 同样地,正确选取输出滤波电容也很关键。它不仅影响负载瞬态响应特性而且直接关系到输出电压稳定性与纹波水平的控制能力。 综上所述,在设计DC-DC升压电路时需要综合考虑多个因素来确定最佳参数配置以实现高效可靠的电源转换功能。
  • 12V20000V的设计
    优质
    本设计图展示了从低压12伏特到高压20000伏特的完整电路升级方案,适用于电力工程和电子设备改造项目。 ### 12V升压至20000V电路设计与原理 #### 引言 在电子工程领域,升压电路是一种常见的技术手段,用于将较低的输入电压转换为较高的输出电压。本段落主要介绍一种特殊的升压电路——能够将12V的输入电压提升至高达20000V的电路设计。这种高电压输出通常应用于特殊场合,如静电放电测试设备、等离子发生器或某些科研实验中。 #### 二、电路概述 该电路的核心在于利用特定的变压器和倍压器(通常是倍压整流电路)来实现电压的大规模提升。其中,变压器负责将初始的12V交流电压转换为更高电压等级的交流电;而倍压器则进一步将交流电转换为直流电,并通过多次倍压过程最终达到20000V的输出电压。 #### 三、关键组件解析 1. **变压器**:选择合适的变压器是设计该电路的关键步骤之一。变压器应具备良好的绝缘性能,以确保安全地承载如此高的电压。此外,变压器的匝数比需要根据所需的输出电压进行精确计算。 2. **倍压整流电路**:倍压整流电路是一种常见的高压电源电路形式,通过使用二极管和电容器的组合来实现电压的倍增。在这个电路中,采用了8级倍压器的设计,每经过一级倍压器,电压都会有所增加。 3. **二极管**:在倍压整流电路中,二极管的作用是阻止电流反向流动,确保每个阶段产生的电压能够稳定地积累起来。 4. **电容器**:电容器用于存储电荷并在倍压过程中释放,以实现电压的逐步提升。 5. **保护电路**:考虑到如此高的电压可能带来的危险性,设计中还应该包含适当的保护措施,如过压保护、短路保护等。 #### 四、电路工作原理 - **初级侧**:电路的初级侧通常由一个简单的AC电源供电,通过调节输入电压(例如使用可调电源)可以控制最终输出电压的大小。 - **变压器作用**:变压器将初级侧的低压交流电转换为高压交流电。 - **倍压过程**:倍压整流电路中的二极管和电容器组合,通过每次半波的充电过程逐步提升电压。 - **输出处理**:最终输出的高压直流电可以通过额外的滤波器来平滑电压波动,提高输出电压的质量。 #### 五、安全注意事项 操作人员必须具备专业知识。由于涉及到极高电压的操作,因此只有经过专业培训的技术人员才能进行相关操作。使用适当的绝缘工具和装备,在操作时应穿戴绝缘手套、鞋等防护装备,并使用绝缘工具。确保工作环境的安全性,在操作之前应对周围环境进行检查,确保没有导电物质接近高压源。避免直接接触,即使是在断电后,高压电路中也可能残留电荷,因此在维修或检查时也应采取相应的安全措施。 #### 六、应用场景 - **科研实验**:在物理实验中,有时需要使用高电压来进行特定的测试或研究。 - **工业应用**:某些工业设备如静电喷涂机和空气净化器可能需要用到高压电源。 - **教学演示**:这类电路可以作为电子工程的教学材料,帮助学生理解高压电路的工作原理。 12V升压至20000V的电路不仅是一项技术挑战,更需要在设计时充分考虑其安全性。通过对关键组件的选择和合理布局,并采取必要的安全措施,可以有效地实现这一目标。
  • 将7V12V转换方法
    优质
    本文章介绍了一种有效的电子电路设计技巧,通过使用特定的升压芯片或变压器,可以将输入电压为7伏特的电源提升到稳定的12伏特输出,适用于各种需要提高供电电压的应用场景。 有两种方法可以实现:第一种是将两块7V/1A的电池板并联起来,这样可以获得一个7V/2A的电源,并通过升压的方式将其转换为12V;第二种则是把这两块电池板串联在一起得到一个14V/1A的电源,然后使用降压电路将其调整至12V。 对于第一种方法,在将两块电池并联后,我们可以通过直流升压芯片来实现7V到12V的转换。常见的升压芯片包括LM2577、BT2013、BT2014和MC34063等。以MC34063为例进行说明:该型号支持升压或降压电压变换,输入电压范围在2.5V到40V之间,输出电压同样可以在1.25V至40V范围内调节,并且最大可提供1.5A的电流。其输出电压计算公式为 VOUT = 1.25 × (1 + R2/R1)。 根据上述公式和要求设定R1=2.32K,R2=20K,则可以得到:VOUT = 1.25 × (1 + 20/2.32) ≈ 12V。这说明通过调整电阻值即可实现所需电压转换。 对于第二种方法,同样地也可以使用MC34063电路来将串联后的电池板从14V降至所需的12V输出。