
关于自动驾驶汽车局部避障路径规划与跟踪控制的研究
5星
- 浏览量: 0
- 大小:None
- 文件类型:PDF
简介:
本研究聚焦于自动驾驶技术中的局部避障路径规划与跟踪控制系统设计,旨在提升车辆在复杂环境下的自主导航能力和安全性。通过优化算法和实时感知技术的应用,实现高效、安全的动态障碍物规避策略。研究成果对于推进无人驾驶汽车的实际应用具有重要意义。
采用分层控制架构搭建局部避障路径规划与跟踪控制系统模型。上层为避障路径规划层,基于人工势场(APF)和模型预测控制(MPC)算法设计了两种避障路径规划器。在设计APF避障路径规划器时,在斥力场上引入了车辆与目标点的距离因子,并增设虚拟子目标点,建立了道路边界斥力势场;而在设计MPC避障路径规划器时,则对目标函数中的避障功能进行了优化改进。
下层为跟踪控制层,基于MPC算法设计了路径跟踪控制器。通过CarSim和Simulink联合仿真模型,在30km/h、60km/h及90km/h的不同车速条件下,测试车辆沿双移线参考路径的跟踪性能,并进行仿真实验验证。
将前面两种规划器分别与跟踪控制器结合后搭建了两个集成控制系统模型并进行了相应的仿真。采用效果更佳的双层MPC控制模型完成了直线避障实车试验。结果显示:试验车辆成功避开障碍物,最大方向盘转角绝对值为188.2°,横摆角速度的最大绝对值为9.411°/s,均在合理范围内;这表明所设计的双层MPC控制系统具有良好的路径规划和跟踪效果,并且行驶过程符合稳定性需求。
### 自动驾驶汽车局部避障路径规划与跟踪控制研究
#### 一、研究背景及意义
随着科技的进步和社会发展的需要,自动驾驶技术已成为汽车行业的重要发展方向之一。其中,局部避障路径规划和跟踪控制作为关键技术环节,在提高车辆的安全性和可靠性方面发挥着重要作用。通过高效准确的路径规划以及精准可靠的路径跟踪控制策略,可以确保在遇到障碍物时迅速作出反应并选择安全路线规避风险,从而保障乘客的生命财产安全。
#### 二、国内外研究现状
##### 2.1 局部路径规划的研究进展
近年来,在局部避障路径规划领域内积累了大量的研究成果。主要方法包括基于人工势场(APF)和模型预测控制(MPC)。其中,APF通过吸引势场引导车辆向目标点移动,并利用斥力势场避免障碍物;而MPC则通过对未来状态的预测来实现最优路线的选择。
##### 2.2 路径跟踪控制的研究进展
路径跟踪技术也得到了广泛关注。目前,基于MPC的方法因其良好的实时性和鲁棒性被广泛应用,在动态调整车辆参数以精确跟随预定轨迹方面表现出色。
#### 三、研究内容概述
本项目采用分层架构设计了一个局部避障路径规划与跟踪控制系统模型:
1. **上层:避障路径规划层**
- 设计了改进型APF和MPC两种路径规划器。对APF的修改包括引入距离因子以及增设虚拟目标点,同时建立了道路边界斥力势场;而在优化MPC时,则着重于提升其避开障碍物的能力。
2. **下层:跟踪控制层**
- 基于MPC算法开发了路径跟随控制器以确保车辆能够精确地遵循由上一层规划出的路线。
#### 四、实验验证
为了检验所提出方法的有效性,研究团队在不同速度条件下进行了仿真实验,并测试了车辆对双移线参考轨迹的跟踪能力。结果表明,在所有测试车速下,汽车均能稳定且准确地跟随预定路径行驶。
此外还实施了一项实车试验来评估上述控制策略的实际性能表现:使用改进后的MPC模型完成直线避障任务后发现,实验用车成功绕过了障碍物,并在最大方向盘转角和横摆角度方面都保持了合理的数值范围;这证明所设计的双层控制系统具备良好的路径规划与跟踪效果以及行驶稳定性。
#### 五、结论
本研究提出了一种基于分层控制架构的局部避障路径规划及跟踪系统模型。通过对APF和MPC算法进行改进,显著提高了其在复杂环境中的适应性和安全性;同时,利用MPC方法实现了高精度的轨迹跟随效果。通过仿真实验与实地测试验证了该方案的有效性,并为推动自动驾驶技术的发展提供了有力支持。
#### 六、展望
尽管取得了阶段性成果,但自动驾驶领域仍面临诸多挑战。未来研究可从以下几方面着手:
1. **环境感知能力提升**:进一步改进传感器配置和技术以提高复杂场景下的识别精度。
2. **多车协同避障策略开发**:探索建立车辆间协作机制来实现更高效的障碍物规避路径规划。
3. **极端条件适应性增强**:深入研究恶劣天气和特殊路况对系统性能的影响,提升整体鲁棒性和可靠性。
通过持续的技术创新与优化改进,自动驾驶技术将更加成熟可靠,并为人们的出行带来更多便利与安全保障。
全部评论 (0)


