Advertisement

MATLAB中的二次规划方法

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文章介绍了在MATLAB环境下进行二次规划问题求解的方法和技巧,包括模型建立、参数设置及算法选择等内容。 这个程序是使用MATLAB的二次规划法调用函数编写的一个很好的程序。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MATLAB
    优质
    本文章介绍了在MATLAB环境下进行二次规划问题求解的方法和技巧,包括模型建立、参数设置及算法选择等内容。 这个程序是使用MATLAB的二次规划法调用函数编写的一个很好的程序。
  • MATLAB程序
    优质
    本程序利用MATLAB实现二次规划问题求解,适用于工程、经济等领域中涉及优化问题的研究与应用。 二次规划的MATLAB程序对于初学者来说易于上手且切实可用。
  • 序列MATLAB代码
    优质
    《序列二次规划方法及MATLAB代码》一书深入浅出地介绍了序列二次规划(SQP)算法的基本理论与应用技巧,并通过丰富的MATLAB实例展示如何实现和优化该算法。适合工程、科研人员学习参考。 序列二次规划计算方法的详细介绍包括了该方法的内容,并附带了详细的MATLAB代码及注释。此外还包含了案例讲解,这是一份非常有价值的资源。
  • 基于优化Matlab代码
    优质
    本段代码采用MATLAB实现了一种基于二次规划的优化算法,旨在解决具有凸约束条件下的非线性最小化问题。适合于工程控制、金融建模等领域中复杂系统的优化需求。 优化方法的二次规划Matlab代码可以下载了!有兴趣的朋友快来获取吧!
  • 基于MATLAB线性、整数
    优质
    本教材深入浅出地介绍了利用MATLAB进行线性规划、整数规划及二次规划的方法与技巧,适合工程技术和科研人员学习参考。 用单纯形法求解线性规划问题;使用修正的单纯形法同样可以解决这类问题;对于整数规划,则可采用割平面法或分支定界法进行处理;0-1规划可以通过枚举法(包括穷举法和隐枚举法)来解决;等式约束下的凸二次规划可以用拉格朗日方法求解,而不等式约束的此类问题则适合用起作用集法或路径跟踪法。
  • 有效集在凸应用.rar
    优质
    本研究探讨了有效集算法在求解凸二次规划问题中的应用,分析其算法原理、优化策略及数值表现,为相关领域提供了理论与实践参考。 最优化算法中的凸二次规划的有效集法非常实用。这里提供了一个可以运行的程序包,包含四个M文件。其中有两个文件的功能相同,但一个可以直接执行,另一个需要在命令窗口中调用。
  • 基于Matlab非线性序列(SQP)算程序
    优质
    本简介介绍了一种利用MATLAB实现的非线性规划中的序列二次规划(SQP)算法程序。该工具适用于解决复杂约束下的优化问题,提供高效且精确的解决方案。 非线性规划的序列二次规划(SQP)算法Matlab程序描述了如何使用该方法解决复杂的优化问题,并提供了相关的编程实现细节。
  • 关于quadprog(MATLAB代码)
    优质
    简介:本文档提供了一个使用MATLAB软件实现二次规划问题求解的教程和示例代码,重点介绍了Quadprog函数的应用方法。适合需要解决优化问题的研究者和技术人员参考学习。 二次规划quadprog(MATLAB代码)此代码为调用MATLAB自带的quadprog函数进行完整实现, 方便需要优化二次规划模型的研究人员使用.其目标函数和约束可以根据自己的模型进行设置.具体而言,目标函数定义为y=1/2 xT*H*x+fT,并包含线性不等式约束 A*x≤b 和线性等式约束Aeq*x=beq。变量上下限也需要设定。 代码运行结果如下:输出解向量x = 0.6667 1.3333,目标函数最优值fval为-8.2222,exitflag的值为1表示算法成功收敛并找到全局最小点。
  • (SOCP)
    优质
    二次锥规划(SOCP)是一种凸优化问题,旨在最小化变量的线性函数,同时满足特定的二次锥约束条件。它在工程、金融等多个领域有广泛应用。 个人博客Glooow,欢迎各位读者访问。 文章目录: 1. 二阶锥 - 1.1 定义 在此之前,先给出二阶锥的定义。在 k 维空间中,二阶锥 (Second-order cone) 的定义为: \[ \mathcal{C}_{k}=\left\{\left[\begin{array}{l} u \\ t \end{array}\right] | u \in \mathbb{R}^{k-1}, t \in \mathbb{R}, \|u\|_2 \leq t\right\} \] 其中,\(u\) 是一个 \(k-1\) 维向量,而 \(t\) 是实数,并且满足 \(u\) 的欧几里得范数小于等于 \(t\)。