Advertisement

基于深度学习的驾驶者变道行为预测

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究利用深度学习技术分析驾驶者的行驶数据,旨在准确预测驾驶者的变道意图,提升自动驾驶系统的安全性和流畅性。 车道变换在交通安全方面扮演着重要角色,准确预测驾驶员的车道变换行为能够显著提升驾驶安全性。本段落提出了一种结合全连接神经网络与循环神经网络的混合模型,旨在精确预测车道变换行为。同时,我们引入了动态时间窗口的概念,并提取包含驾驶员生理数据和车辆运动学信息在内的特征以支持这一预测任务。通过真实交通场景中的实际数据验证了该模型的有效性。此外,将此提出的模型与其他五种预测模型进行了对比测试,结果显示,在精确率与前瞻时间方面,本段落所提方案优于其他所有比较对象。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究利用深度学习技术分析驾驶者的行驶数据,旨在准确预测驾驶者的变道意图,提升自动驾驶系统的安全性和流畅性。 车道变换在交通安全方面扮演着重要角色,准确预测驾驶员的车道变换行为能够显著提升驾驶安全性。本段落提出了一种结合全连接神经网络与循环神经网络的混合模型,旨在精确预测车道变换行为。同时,我们引入了动态时间窗口的概念,并提取包含驾驶员生理数据和车辆运动学信息在内的特征以支持这一预测任务。通过真实交通场景中的实际数据验证了该模型的有效性。此外,将此提出的模型与其他五种预测模型进行了对比测试,结果显示,在精确率与前瞻时间方面,本段落所提方案优于其他所有比较对象。
  • 员分心与疲劳警系统:利用YOLOv5和DeepSort检危险
    优质
    本研究开发了一套基于深度学习的预警系统,采用YOLOv5进行实时目标检测及DeepSort算法跟踪,有效识别并预警驾驶员的分心与疲劳行为,提升行车安全。 基于深度学习+YOLOv5+Deepsort的驾驶员分心驾驶行为(疲劳+危险行为)预警系统+源代码+文档说明.zip是一个经过导师指导并获得高评分的大作业设计项目,适用于课程设计及期末大作业使用。该项目包含完整的源代码和详细的文档说明,可直接下载后运行无需修改。 压缩文件内包括: - 源代码:涵盖基于深度学习技术、YOLOv5目标检测以及Deepsort目标跟踪算法的驾驶员分心驾驶行为预警系统的实现细节,如数据预处理、模型构建与训练、目标识别和追踪机制等。 - 文档说明:提供项目背景信息、设计目的、方法论介绍(包括代码结构)、相关数据集详情及使用指南等内容,有助于用户深入了解并有效利用该系统。 此系统运用深度学习技术,并结合先进的目标检测和跟踪算法,旨在帮助驾驶员及时察觉分心驾驶行为,从而提高行车安全。通过研究与应用这一预警机制,可以显著增强道路行驶的安全性。
  • 员疲劳与危险分心警系统.zip
    优质
    本项目开发了一套利用深度学习技术识别和预测驾驶员疲劳及危险行为(如使用手机、不系安全带等)的智能预警系统,旨在提高驾驶安全性。 该项目旨在检测驾驶员的专注度,分为疲劳检测和分心行为检测两部分。 在疲劳检测方面,项目采用Dlib库进行人脸关键点识别,并通过分析眼睛与嘴巴的状态(如闭眼或打哈欠)来判断驾驶者的疲劳程度。此外,还利用Perclos模型进一步量化疲劳水平。 对于分心行为的监控,则运用了Yolov5算法以识别玩手机、抽烟和喝水等可能分散注意力的行为。 要运行此程序,请确保安装了所需的依赖库:YoloV5、Dlib 和 PySide2。然后直接执行main.py文件即可启动系统。
  • 技术疲劳算法
    优质
    本研究提出一种利用深度学习技术的新型疲劳驾驶检测方法,旨在通过分析驾驶员面部特征和行为模式,有效识别并预警潜在的安全风险。 为解决现有疲劳驾驶检测算法实用性差或准确率低的问题,本段落提出了一种基于深度学习的疲劳驾驶检测方法。首先使用HOG(Histogram of Oriented Gradient)特征算子来识别驾驶员的脸部;接着利用特征点模型对齐人脸,并分割出眼睛和嘴巴区域;最后通过深度卷积神经网络提取眼部疲劳信号,并结合嘴部疲劳状态进行综合分析,实现有效的疲劳预警功能。实验结果表明,该方法在检测准确率及实时性方面均有显著提升。
  • 分析
    优质
    《驾驶者行为分析》是一份专注于研究驾驶员在不同情境下的决策、反应及习惯的专业报告。通过数据分析和实证研究,探讨提高道路安全性和交通效率的方法。 驾驶员行为分析的SCI论文对于从事车联网研究的人来说具有很高的参考价值。建议相关领域的研究人员可以对此进行深入探讨。
  • 分群:无监督聚类方法
    优质
    本研究提出了一种基于无监督学习的方法来对驾驶员的行为进行分类和分析,旨在识别不同驾驶风格的群体。通过聚类技术揭示驾驶行为模式,为交通安全与智能驾驶系统开发提供数据支持。 在该项目中,我们致力于构建一个统计模型来基于CAN总线传感器数据对驾驶员行为进行聚类分析。我们将采用层次聚类方法识别并分组不同驾驶风格的司机。这种分类能够帮助改进驾驶性能。 为了准备资料,首先需要清理overview.csv 数据集:该数据集包含42个参数(列)和60个变量(观测值)。在数据分析前,我们需要进行一系列的数据清洗工作,包括类型转换以及将缺失值替换为零的操作。通过绘制相关系数矩阵,我们可以识别出具有最低相关性的变量,并将其作为解释变异性的关键因素。这一步骤有助于减少需要考虑的参数数量。 特征id:代表车辆唯一标识符。 odo:表示车辆里程表读数(以公里计)。 dist:指在特定时间段内行驶的距离。 fuelc:报告期间内的总燃油消耗量,包括行驶、怠速以及使用取力器时的情况(升为单位)。 idle:发动机处于怠速模式下的运行时间,格式如HH:MM:SS表示法。 pause:发动机暂停工作的时间段长度,以HH:MM形式记录。
  • 组合神经网络
    优质
    本研究提出了一种基于组合神经网络的模型,旨在准确预测驾驶员的行为模式。通过整合多种神经网络架构的优势,该方法能够处理复杂驾驶场景中的不确定性,提高预测精度和鲁棒性,为智能交通系统的发展提供有力支持。 本段落采用CNN-LSTM 并行式网络模型作为核心预测算法。在实际交通场景下,目标车辆未来驾驶行为的产生不仅受自身历史运动数据的影响,也会受到周边车辆历史信息的作用,这些因素包含了时空特征。因此,在本研究中使用LSTM 网络来提取时间序列特性而用CNN 来捕捉空间维度的信息。 本段落将驾驶行为分类为向左换道、直行和向右换道三种类型,并通过对不同驾驶行为样本的统计分析得出其各自的特点,以此预测目标车辆未来的行驶模式。通过仿真实验发现,相较于传统方法,基于CNN-LSTM 的模型在预测性能方面表现更佳。 此外,本段落还利用GBDT(Gradient Boosting Decision Tree)算法进行特征挖掘来揭示车辆行驶过程中的驾驶行为规则。该决策树算法能够弥补CNN-LSTM 模型缺乏解释性的缺陷,并对车辆与周边环境的相互作用关系进行了量化描述。通过这种方法可以获取一系列在不同情况下采取特定驾驶行为时所遵循的行为准则,从而增强模型的应用价值和实用性。
  • 注意力机制分层强化在自动应用
    优质
    本研究探讨了结合注意力机制与分层策略的深度强化学习方法,在模拟环境中优化自动驾驶车辆的换道决策过程。通过提高系统对关键环境因素的关注度,有效提升了驾驶安全性和流畅性。 执行安全高效的车道变更是创建全自动驾驶汽车的关键功能之一。尽管最近的技术已经展示了使用深度强化学习实现成功车道跟随行为的能力,但很少有研究关注车辆在道路上与其他车辆交互以进行车道变更的行为。本段落提出了一种分层的深度强化学习(DRL)算法来学习密集交通环境中的车道变化策略。通过将整体行为分解为子策略,可以更有效地掌握快速且安全的变道动作。此外,我们还引入了时空注意机制到DRL架构中,这有助于车辆更加关注周围的动态情况,并促进了更为流畅和自然的车道变更过程。在TORCS模拟器中的实验结果显示,在各种复杂的车道变更场景下,我们的方法均优于现有的深度强化学习算法。
  • 及Yolov5员危险警系统完整源码(优质项目).zip
    优质
    该资源提供了一套利用深度学习和YOLOv5算法实现驾驶员危险行为实时检测与预警的系统完整源代码,适用于自动驾驶、智能车载安全等领域。 基于深度学习与YOLOv5的驾驶员危险驾驶行为检测预警系统完整源码(高分项目).zip包含了经过本地编译并可直接运行的代码,这些源码在评审中获得了95分以上的成绩。该项目难度适中,并且所有内容都已由助教老师审核确认能够满足学习和使用的需求。如果有需要的话可以放心下载使用。