Advertisement

利用STM32和霍尔传感器计算电机角度的FOC控制PSMS电机程序。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
利用STM32f103微控制器实现霍尔效应角度计算与永磁同步电机(PMSM)的直接转动控制(FOC),该系统以霍尔传感器作为FOC控制回路的反馈信号源,经过实际验证,能够可靠地执行正旋波旋转功能。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于STM32FOCPSMS
    优质
    本项目采用STM32微控制器结合霍尔传感器实现无刷直流电机(PSMS)的角度估算,并开发了磁场导向控制(FOC)算法,优化电机性能。 基于STM32f103的PMSM电机FOC控制方案利用霍尔传感器计算角度,并将霍尔信号作为FOC反馈源。该方案经过测试确认可行,能够生成正弦波进行旋转驱动。
  • 基于STM32103BLDCFOC识别
    优质
    本项目基于STM32103微控制器开发,实现对BLDC电机的FOC矢量控制,并通过霍尔传感器精确识别电机转子位置,优化电机性能。 基于STM32103的FOC控制BLDC电机的程序采用霍尔传感器识别角度,已亲测可用。
  • PSMSFOC法详解.zip
    优质
    本资料深入解析了无传感器永磁同步电机(PMSM)矢量控制技术中的FOC算法,涵盖理论基础、实现方法及应用案例。 无传感器PSMS电机FOC控制算法详解 本段落将详细介绍如何在缺乏传统位置传感器的情况下实现永磁同步电机(PSMS)的磁场定向控制(FOC)。通过精确计算,可以优化电动机性能并提高效率。我们将探讨关键的数学模型和算法步骤,以及它们如何应用于实际控制系统中以确保平稳运行和高效能表现。
  • PSMSFOC法详解-综合文档
    优质
    本文档深入解析了无传感器永磁同步电机(PSMS)的磁场定向控制(FOC)算法,提供详尽的技术指导与理论分析。 无传感器PSMS电机FOC控制算法详解 本段落将详细介绍无传感器永磁同步电机(PSMS)的磁场定向控制(FOC)算法。通过深入解析该技术的工作原理,帮助读者理解如何在没有位置传感器的情况下实现精确的位置和速度控制。 首先,我们将探讨FOC的基本概念及其优势,并解释为何它对于提高电机性能至关重要。接着会详细介绍无传感器估计方法,包括反电动势法、模型预测电流观测器等常用策略,用于获取转子位置信息。 然后重点讨论如何设计并优化算法以适应不同应用场景需求,在保证系统稳定性和鲁棒性的同时实现高效能控制目标。 最后还将分享一些实用技巧和注意事项,帮助工程师在实际项目中更好地应用这一技术。希望本段落能够为从事相关领域研究或开发工作的读者提供有价值的参考信息。
  • STM32升降桌(,PID速调节)
    优质
    本项目设计了一款基于STM32微控制器的智能升降桌,采用霍尔传感器精准控制电动机运行,并通过PID算法实现平稳的速度调节,提供舒适的使用体验。 STM32升降桌控制程序通过PWM驱动电机调速,并利用霍尔信号形成闭环反馈进行PID调节,以此实现对升降速度和位置的精确控制。
  • STM32 FOC与速源码MC_State_Observer
    优质
    本项目提供STM32微控制器上FOC算法实现的源代码,重点在于电机的角度和速度估算,包含状态观测器模块以提高系统性能。 STM32FOC电机控制角度速度计算源代码MC_State_Observer用于实现对电机状态的观测与控制。该代码是针对使用STM32微控制器进行Field-Oriented Control(磁场定向控制)的应用场景设计,能够有效地帮助开发者完成电机的角度和速度相关的算法开发工作。
  • DSP28335_BLC_Driver_V16_2_170216__无_BLDC_dsp28335
    优质
    这是一款基于TI公司的DSP28335微控制器,适用于无霍尔传感器BLDC电机的驱动软件。版本号为V16_2_170216,旨在简化无传感器BLDC电机控制的设计与实现过程。 无刷直流电机霍尔传感器控制采用DSP28335作为控制器。
  • myhallBLDC.rar_fear3em_nearby5ua___
    优质
    本资源包提供了一个关于霍尔传感器在BLDC(无刷直流)电机应用中的解决方案。内容包括传感器原理、电路设计及代码示例,适合电机控制技术的学习和研究使用。 直流无刷电机带霍尔传感器双闭环的MATLAB仿真
  • 基于STM32F103三相.7z
    优质
    本压缩文件包含一个用于STM32F103系列微控制器的源代码库,旨在实现通过霍尔传感器对三相电动机进行精确控制的功能。 本段落将深入探讨基于STM32F103微控制器的三相电机控制程序,并重点介绍使用霍尔传感器的方法。STM32F103是意法半导体(STMicroelectronics)生产的一款高性能、低成本的32位微控制器,属于ARM Cortex-M3内核系列,在工业控制、自动化和机器人技术等领域广泛应用。 三相电机如三相交流异步电机或无刷直流电机广泛应用于需要精确速度与位置控制的应用中。这些电机以高效率和可靠性著称,并且易于驱动。STM32F103微控制器能够高效管理这类电机运行,通过调整电流和电压来实现对转速及方向的精准调控。 霍尔传感器在三相电机控制系统中扮演关键角色,尤其是在无刷直流电机应用里更为重要。它们用于检测转子位置,并提供准确信号以确定旋转方向与位置。这些反馈信息被用来同步换相信号的时间点,确保电流正确地流向绕组并实现平稳运行。 使用STM32F103进行三相电机控制涉及以下几个核心概念: 1. **PWM(脉宽调制)**:利用微控制器的多个PWM通道来调节电机转速和扭矩。 2. **定时器**:用于生成PWM信号,同时可以计算电机速度。通过测量霍尔传感器产生的信号间隔确定具体速度。 3. **中断处理**:由霍尔传感器触发的中断让微控制器执行换相操作,保证连续运转。 4. **死区时间设置**:为避免电流短路,在不同绕组间设定短暂“死区”。 5. **电机控制算法选择**:包括六步和十二步换相信号策略,根据具体需求确定最佳方案。 6. **保护机制与错误处理**:应设计过流、过热及欠压防护以确保安全运行。 压缩包文件中可能包含以下内容: - **源代码**: 使用C或汇编语言编写,实现上述功能。 - **配置文件**:如STM32CubeMX生成的设置文档,定义时钟和外设参数等信息。 - **库文件**:包括标准、HAL或LL库以简化编程流程。 - **固件烧录工具**: 如JLink或STLink软件用于下载程序至微控制器。 - **示例代码**: 包含初始化及电机控制函数,帮助理解如何使用霍尔传感器和PWM进行驱动。 掌握这些概念对于基于STM32F103的三相电机控制系统开发至关重要。通过深入学习与实践,开发者能够创建高效且可靠的电机驱动解决方案。