Advertisement

Simulink利用BP神经网络对柴油机转速进行PID控制。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
在Simulink环境中,本文探讨了基于反向传播神经网络(BP神经网络)的PID控制在柴油机调速系统中的实际应用。内容涵盖了系统的详细模型构建、深入的数学模型分析、以及一个简化的PID控制仿真实验的设计。此外,还对BP神经网络与PID控制的结合进行了研究,并提供了相应的仿真实现。该研究采用Simulink模块,利用S函数对BP神经网络进行编程实现,同时配套提供了详细的Word文档说明,以供用户参考和理解。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 基于SimulinkBPPID器在中的应
    优质
    本文探讨了将Simulink与BP神经网络结合优化PID控制器的方法,并将其应用于柴油机转速控制中,以提高系统的响应速度及稳定性。 在Simulink环境中应用基于BP神经网络的PID控制技术于柴油机调速系统中。该研究包括系统的模型构建、数学模型分析、简单的PID控制仿真以及利用BP神经网络优化后的PID控制方法。项目使用了Simulink模块,并通过S函数实现了BP神经网络的功能,同时提供了详细的Word文档说明以供参考。
  • 系统中PID的应
    优质
    本文探讨了在柴油机调速系统中应用神经网络PID控制技术,通过优化控制系统参数提高系统的响应速度和稳定性。 基于柴油机转速控制系统的数学模型,在常规PID调节的基础上融合神经网络技术,设计了PID神经元网络控制器及其算法。在Simulink环境下对该控制系统进行了仿真研究。结果显示,PIDNN控制器具有良好的动态性能及较强的鲁棒性,相较于单一的PID控制方法,显著提升了柴油机转速控制系统的整体性能,具备广泛的推广和应用价值。
  • 基于BPPIDSimulink仿真
    优质
    本研究结合了BP神经网络和PID控制技术,在MATLAB Simulink环境下进行系统仿真,旨在优化控制系统性能。 关于杨艺的《基于S函数的BP神经网络PID控制器及simulink仿真》,我在Matlab2016b上搭建了SIMULINK模型,并且已经验证可用。
  • 基于的自适应PID方法 结合RBF(BPPID器构建了PID器,并传递函数分析。
    优质
    本文提出了一种结合径向基函数(BP)神经网络和传统PID控制器的自适应控制系统,通过优化PID参数提高了系统的响应性能。采用了传递函数方法对系统稳定性进行了深入研究与验证。 基于神经网络的自适应PID控制器通过结合RBF(BP)神经网络与PID控制器建立了神经网络PID控制器,并利用传递函数进行系统建模。该方法能够自动调整PID参数,从而实现对方波信号的有效跟踪。程序中包含了详细的注释以方便理解。
  • Matlab中的BP_PID-基于BP PID.rar
    优质
    本资源提供了一个关于使用BP-PID神经网络进行控制系统设计的研究案例,包括相关算法实现和仿真分析。文件内含详尽的MATLAB代码及注释,适用于深入研究与学习。 Matlab基于BPPID神经网络控制-基于BP PID神经网络控制.rar,这是一个不错的资源!
  • 基于BPPID
    优质
    本研究提出了一种结合BP神经网络与PID控制策略的方法,旨在优化控制系统性能,通过自适应调整PID参数以改善响应速度和稳定性。 BP PID控制器通过引入一个传递函数作为案例,能够实现优化PID算法的功能。
  • 基于BPPIDSimulink仿真分析
    优质
    本研究运用了MATLAB中的Simulink平台,结合BP神经网络和PID控制技术,进行了一系列仿真试验与分析。通过优化PID参数及训练BP神经网络模型,旨在提高控制系统性能并实现精确控制目标。 BP神经网络是一种广泛应用的多层前馈神经网络,在训练过程中采用反向传播算法而得名。它在控制系统优化与设计等领域发挥重要作用。PID控制作为一种经典的控制策略,能够有效调整系统性能以实现稳定输出。将BP神经网络与PID控制结合,可以利用其自学习能力和非线性映射能力来改善传统PID控制器的性能。 在MATLAB环境下,可以通过构建基于S函数的BP神经网络PID控制器,并使用SIMULINK进行系统仿真来完成这一过程。MATLAB是数学计算、数据分析和编程的强大工具,而SIMULINK则是用于动态系统建模与仿真的图形化界面,支持多种类型的模型包括连续系统、离散系统以及混合系统。 在杨艺的文章中展示了如何在MATLAB 2016b版本实现这一过程。我们需要创建一个BP神经网络结构,并定义输入层(通常为系统的误差和误差变化率)、隐藏层及输出层(通常是PID控制器的输出)。接下来,需要定义学习规则如动量项与学习速率以调整权重更新。通过反向传播算法,神经网络可以自动调节权重来最小化误差。 然后,将神经网络集成到SIMULINK模型中作为S函数,并可能使用MATLAB Coder或Simulink Coder生成C代码以便在SIMULINK环境中执行计算。在SIMULINK模型中设置PID控制器模块并用BP神经网络输出调整其参数(如比例、积分和微分增益)。这样,控制器可以根据实时状态动态调节行为以提高控制性能。 仿真过程中可以改变输入条件或设定不同的初始状态来观察系统响应及评估控制器的性能。此外通过调整网络结构(例如隐藏层节点数)与训练参数(比如迭代次数、学习速率等),进一步优化神经网络的表现。 总之,BP神经网络和PID控制结合在SIMULINK中的仿真是一种将现代神经网络技术与经典控制理论相结合的应用案例,利用MATLAB和SIMULINK的强大功能提升了控制系统性能。这种组合不仅具有理论意义,在工业自动化、航空航天及电力系统等领域也具备广泛应用价值。通过深入理解和实践这一方法可以更好地掌握神经网络在控制工程中的应用。
  • BP_PID_PID_BP-PID
    优质
    简介:BP_PID是一种结合了传统PID控制与人工神经网络技术的先进控制系统。通过运用BP算法优化PID参数,该方法能够有效改善系统动态性能和鲁棒性,在工业自动化领域展现出广阔应用前景。 建立神经网络PID模型的仿真可以有效控制参数。
  • BP人口预测
    优质
    本研究采用BP(Back Propagation)神经网络模型对人口变化趋势进行预测分析,旨在探索更准确的人口预测方法。通过调整网络参数和训练数据优化预测结果,为政策制定提供依据。 基于BP神经网络的人口预测方法能够有效提高人口发展趋势的预见性与准确性。通过构建合适的模型结构并进行训练优化,该技术可以更好地捕捉人口变化中的复杂模式,并对未来趋势做出科学预判。这不仅为政府制定相关政策提供了重要参考依据,同时也促进了社会学、经济学等多领域研究的发展。
  • SIMULINK中的PID模型
    优质
    本研究探讨了在MATLAB SIMULINK环境中构建和优化基于神经网络的PID控制系统的方法,旨在提高复杂系统控制性能。 神经网络PID控制Simulink模型在MATLAB 2017a平台上十分复杂,可以挑选需要的部分进行使用。