Advertisement

关于功率控制下无人机干扰抑制的研究论文.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文深入探讨了在功率控制策略下的无人机通信系统中如何有效抑制干扰的问题,提出了一种新的算法来优化无人机间的信号传输效率和稳定性。 针对由地面蜂窝移动通信网络支持的无人机与地面用户共存的通信系统,在无人机较高的飞行高度下,导致了无人机与基站之间的链路为直射径链。因此,研究基于功率控制的无人机干扰抑制方案具有重要意义。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本文深入探讨了在功率控制策略下的无人机通信系统中如何有效抑制干扰的问题,提出了一种新的算法来优化无人机间的信号传输效率和稳定性。 针对由地面蜂窝移动通信网络支持的无人机与地面用户共存的通信系统,在无人机较高的飞行高度下,导致了无人机与基站之间的链路为直射径链。因此,研究基于功率控制的无人机干扰抑制方案具有重要意义。
  • 线性ADRC
    优质
    线性ADRC控制与干扰抑制是一套先进的控制系统理论,专注于改进自动控制系统的性能和鲁棒性。这种方法通过精确建模系统内部动态和外部干扰,实现了高效的误差补偿和稳定性增强,广泛应用于工业自动化、机器人技术及精密制造等领域。 自抗扰控制器及其线性版本的实现例程提供了一种有效的控制策略,适用于多种工程应用中的系统调节与优化问题。这类控制器通过估计并补偿不确定性和外部干扰的影响,能够显著提高系统的动态性能和鲁棒性。 对于线性自抗扰控制器而言,其设计原理基于对被控对象进行建模,并利用先进的观测器技术来实时估算出作用于系统上的未知参数变化及外界扰动。随后,通过反馈控制机制将这些估计值纳入到调节过程中,从而实现更为精确的跟踪性能和更强的干扰抑制能力。 在实际应用中,线性自抗扰控制器可以通过一系列步骤进行开发与验证:首先是对目标系统的数学模型建立;然后是选择合适的观测器结构来设计状态误差项及其动态补偿环节;最后是在仿真环境中对整个控制方案进行全面测试以确保其稳定性和有效性。
  • (包括电动和发电)传导电磁方法.pdf
    优质
    本文档探讨了针对电机系统中的电磁干扰问题,提出了有效的传导电磁干扰抑制策略和技术方案,以提升设备性能与可靠性。 电机(包括电动机和发电机)的传导干扰(传导EMI)抑制方法的研究探讨了如何减少或消除由电机产生的电磁干扰问题,这对于提高电气设备的工作效率与稳定性具有重要意义。该研究可能涵盖了多种技术手段及策略,以期为相关领域的技术人员提供有价值的参考信息。
  • 矢量永磁同步电转矩脉动.pdf
    优质
    本文探讨了在矢量控制系统中针对永磁同步电机转矩脉动问题的有效抑制策略,旨在提升电机运行平稳性和效率。 为了满足永磁同步电机交流调速系统的高性能要求,在较宽的速度范围内精确估计和控制电机转速至关重要。然而,在低速运行状态下,位置传感器容易受到噪声干扰的影响,导致反馈信号中混入了不必要的噪音成分,从而增加了永磁同步电机的转矩脉动现象。因此,需要通过先进的信号处理技术来提高速度估算值在每个采样瞬间下的精确度。 为解决上述问题,在设计矢量控制系统的基础上采用了递推最小二乘法(RLS)自适应滤波器对噪声环境中的电机转速进行优化处理。仿真试验的结果表明,与传统的PID控制方法相比,该方案不仅保证了高速性能的稳定表现,还显著改善了低速运行时动态响应和控制精度的问题。 永磁同步电机是一种高效、高精度的电动机类型,在工业自动化及电动汽车等领域得到广泛应用;其内部采用永久磁铁作为励磁源,并具备较高的功率密度与优良的速度调节特性。交流调速系统是用于精确调整这种电机转速的关键装置,它能够根据不同的负载变化或需求来动态地改变电机的工作速度。 在低速运行阶段,永磁同步电机面临着一些特有的挑战:由于电磁信号较弱以及位置传感器的准确性下降,噪声干扰问题尤为突出;另外,在这一条件下其动态响应和稳定性也会有所削弱。转矩脉动是指电动机输出力矩出现周期性波动的现象,这会直接影响到设备的工作平稳性和能效比。 递推最小二乘法(RLS)自适应滤波器是一种在线参数估计算法,能够在不断更新数据的过程中对模型参数进行最优估计;在电机控制领域里,该技术可以有效消除噪声干扰带来的影响,并提高系统中速度估算的准确性。矢量控制系统则是通过模拟直流电动机的操作原理来独立调节交流电机定子电流中的励磁分量和转矩分量,以实现更佳动态性能与精确度。 针对永磁同步电机低速运行时出现的转矩脉动问题,本研究提出了一种基于矢量控制技术结合RLS自适应滤波器优化方案。该方法能够有效去除噪声干扰,并提升速度估算精度,在减小转矩波动的同时提高了整个系统的动态性能和工作效率。 通过仿真测试验证了在保持高速运行特性不变的前提下,新提出的RLS算法相比传统PID控制器具有明显优势;这不仅证明了其可行性和有效性,而且为实际应用提供了理论依据和技术支持。
  • 窄带变步长LMS算法
    优质
    本论文探讨了在通信系统中窄带干扰对信号传输的影响,并提出了一种基于变步长LMS(最小均方差)算法的技术方案,旨在有效提升窄带干扰环境下的信号处理能力与通信质量。通过调整LMS算法中的步长参数,该方法能够在保证收敛速度的同时减少稳态误差,从而增强系统的抗干扰性能和鲁棒性。 为了抑制窄带信号并减少其对直接序列扩频通信系统的干扰,研究了一种新的变步长LMS算法来处理信号。根据步长调节原则,并结合双曲正割函数调整了步长μ(n)及误差e(n)的非线性关系。通过理论分析发现,该算法提高了收敛速度、提升了收敛精度以及降低了稳态时的误差水平。在MATLAB中搭建直接序列扩频通信系统进行仿真后得出结论:相较于现有的方法,本研究提出的算法能够更准确地预测和抑制音频干扰信号,并增强了直扩通信系统的抗干扰性能。
  • PLC补偿设备.doc
    优质
    本研究论文探讨了在电力系统中应用可编程逻辑控制器(PLC)进行无功补偿设备自动控制的方法与效果,旨在提高电网效率和稳定性。 本段落探讨了基于PLC的无功补偿装置的设计与应用,旨在提升电力系统的功率因数及整体性能。通过深入研究并设计无功补偿控制设备,并选用三菱公司生产的Fx系列PLC进行研发,实现了智能化调控功能,有效减少了电网中的无功损耗,提升了系统效率。 一、电力系统中无功功率损失问题 - 电力系统的无功损耗可能占据总发电容量的20%至30%。 - 发电机和变压器未充分利用其额定容量是造成这一现象的主要原因。 二、提高功率因数的意义 - 功率因数直接影响到电网运行效率,低功率因数会导致电流增加以及线路压降增大,并且会加大系统中的能量损耗。 三、传统智能控制系统概述 - 传统的解决方案通常包含主基站与远程终端单元(RTU)两部分。 - RTU能够自动采集数据,包括开关状态和模拟量测量结果等信息。 四、交流采样方法的优势 - 相较于直流采样方案,采用交流采样的可靠性更高。 - 它可以直接利用数模转换技术来获取并处理所需的数据。 五、自动化设备的设计要求 - 自动化装置应具备灵活的操作性及易于维护的特点。 - 在硬件设计上需注重可靠性和简便性的结合。 六、基于PLC的无功补偿控制系统介绍 - 文章提出了一种采用三菱Fx系列PLC进行开发的无功补偿控制方案,实现了智能化调节功能以优化电网性能和效率。 七、选择合适的PLC设备 - 在挑选适合的PLC时需综合考虑电力系统的布局以及所需处理的数据量等因素。 - 优质的PLC应具备规范化的操作流程、动态智能调整能力及轻便易用的设计特点等优势。 八、设计总体架构图说明 - 设计方案的整体框架需要涵盖电网的基本情况与自动化需求等多个方面进行考量。 - 此外,还需明确通信协议的选择和分析过程以及对PLC选型的具体要求等内容。
  • 信号相位匹配性能(2008年)
    优质
    本研究聚焦于分析和提升信号相位匹配技术在相干干扰抑制中的应用效果,探讨其理论基础与实际操作方法。 本段落首先介绍了三元阵的信号相位匹配原理,并根据该原理得出了提取期望信号所需满足的条件;接着探讨了利用这一原理来抵消相干干扰的效果,分析了干扰谱幅度起伏对该原理的影响,并推导出在这种情况下提取期望信号时产生的误差表达式。文中还指出基阵接收的随机噪声可以等效为干扰频谱的变化。 鉴于实际应用中大多数基阵包含超过三个阵元的情况,本段落提出了两种方法以充分利用冗余阵元来减少随机噪声影响和提高抗干扰性能:三子阵法与最小二乘法。通过仿真测试发现这两种方法的表现均优于传统的三元阵法;同时指出,在运算量方面,三子阵法则更为经济有效。
  • 混合储能系统平风电.pdf
    优质
    本文研究了混合储能系统在电力系统中用于平抑风电功率波动的应用,分析了不同类型储能技术的特点与组合策略,并通过仿真验证其有效性。 由于风速变化的随机性,风电场输出功率波动较大,这会对电力系统的稳定性造成影响。为了克服这一问题,提出了一种利用混合储能装置来平抑风电功率波动的方法。首先,对风电输出波动进行分解,并根据其特点选择蓄电池和超级电容作为主要储能设备;其次,设计了储能系统与风电场之间的快速功率交换控制方式,使风电场能够稳定地跟踪发电指令;最后,在MATLAB/SIMULINK环境下进行了仿真验证。结果表明,该方法能有效平抑风电输出的波动性,并确保其稳定地跟随发电指令,同时充分发挥蓄电池和超级电容的优势,延长了蓄电池的使用寿命。
  • MVDRcode.zip_MVDR_WIDE MVDR_零陷宽度优化_算法
    优质
    该文档包含一种针对无线通信中的多径和干扰问题而设计的MVDR(最小方差畸变无相关)干扰抑制算法,特别强调了WIDE MVDR技术在优化零陷宽度方面的应用。通过调整算法参数,可以有效减少特定方向上的干扰信号,提高接收信号的质量与清晰度。文档内提供的代码有助于研究人员和工程师实现该算法并进行进一步的实验验证。 标题中的“MVDRcode.zip”表明这是一个包含与最小变差无失真响应(Minimum Variance Distortionless Response, MVDR)算法相关的代码压缩包。MVDR是一种用于信号处理的波束形成技术,在雷达、声纳以及无线通信等领域广泛应用,能够提高目标检测和信号分离的能力。通过扩展或优化MVDR以适应更宽的频率范围可以更好地对抗干扰源。 描述中提到“在传统的MVDR算法上加约束能够产生宽零陷,从而抑制动态干扰”,这说明在基础的MVDR算法基础上可能采用了额外的数学约束或者优化方法,使得形成的波束模板具有更宽的零陷分布,以更有效地抵消或减少动态干扰的影响。动态干扰通常指的是随时间变化的噪声源,在实际环境中非常常见。 压缩包文件列表中包括几个MATLAB脚本: 1. my_exercise01.m:可能是实现MVDR算法的一个练习程序。 2. st_SNR.m 和 SNR.m:可能用于计算或处理信噪比(Signal-to-Noise Ratio, SNR),这是评估信号质量的重要指标。 3. T2F.m: 可能涉及从时间域到频率域的转换,如快速傅里叶变换(FFT),这对于分析信号特性至关重要。 4. st_line.m 和 array_line.m:可能与阵列线性布局相关,因为阵列配置对于MVDR算法的实现非常重要。 5. Rarray_line.m: 可能涉及计算阵列响应矩阵,这是理解波束形成器如何响应不同方向信号的关键。 这个压缩包提供了一个优化的MVDR算法实现,特别针对宽频带干扰抑制。它包含了处理信噪比、阵列响应以及时间-频率转换等功能。通过研究和使用这些脚本,可以帮助理解和改进MVDR算法在实际干扰环境中的性能,并且通过调整零陷宽度及应用适当的约束条件来适应特定的干扰场景,从而提升系统性能。
  • 高移动性场景混合IEEE 802.15.6线体局域网缓解模型
    优质
    本文探讨了在高移动性环境下,针对IEEE 802.15.6标准的无线人体局域网络(WHAN)所面临的干扰问题,并提出了一种混合干扰缓解模型。该研究旨在优化WHAN系统性能和可靠性。 无线传感器网络(WSN)在无线体域网(WBAN)中的应用已经经历了显著的变化,这引起了研究人员和技术提供者的极大兴趣。WBAN通过在其内部或周围部署一些传感器节点来运行,在这些条件下,它们旨在实现高性能表现,包括延长的使用寿命、高吞吐量和数据可靠性、最小延迟以及低功耗。然而,由于大多数WBAN在2.4GHz通用工业科学医疗(ISM)窄带无线频段内工作,这导致了内部干扰和同信道干扰的问题,在密集区域或高度移动场景中尤为突出。此外,这些移动性效应也会使身体姿势发生变化。 本段落提出了一种混合的WBAN干扰缓解模型,该模型结合使用带有冲突避免机制的竞争窗口(CW)方法与用户优先级队列,并基于载波侦听多路访问(CSMA/CA)。通过Omnet++仿真,在站立、行走、坐着和躺着等不同姿势下对该混合模型进行了测试。研究结果表明,相较于IEEE 802.15.6标准的CSMA/CA协议,所提出的混合模型在各种移动状态下具有更高的网络吞吐量、带宽效率以及更低的网络延迟。