Advertisement

利用Python实现单纯形算法及其对偶形式。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
单纯形算法借助Python编程语言,并利用矩阵运算进行编程实现。首先,需要建立模型,随后将输入数据列出,形成初始单纯形表,从而将线性规划问题转化为标准形式,并最终求解 min z 转化为求 max - z。以下以图为例,演示初始化过程: ```python import numpy as np class Simplex(object): #构造函数(初始化函数) def __init__(self, z, B, bound): self.X_count = len(z) #变量个数 self.b_count = len(bound) #约束条件个数 self.z = z ```

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Python
    优质
    本文章介绍了如何在Python中实现单纯形算法及其对偶问题,详细解释了线性规划中的核心概念和步骤,并提供了实用代码示例。 单纯形算法可以通过Python编程语言利用矩阵运算来实现。首先建立模型并输入数据以列出初始的单纯形表,并将线性规划问题转化为标准形式:求min z 转化为 求max -z。 以下是一个例子中的初始化代码: ```python import numpy as np class Simplex(object): # 构造函数(初始化函数) def __init__(self, z, B, bound): self.X_count = len(z) # 变量个数 self.b_count = len(bound) # 约束条件个数 self.z = z ``` 这段代码定义了一个名为`Simplex`的类,用于实现单纯形算法。初始化函数接受三个参数:目标函数系数向量z、基变量列表B和边界约束bound,并设置实例属性X_count表示变量的数量以及b_count表示约束条件的数量。
  • 优质
    对偶单纯形法是一种优化算法,用于求解线性规划问题。它通过保持对偶可行性来逐步达到原问题与对偶问题的同时最优解。 求解对偶单纯形法的步骤清晰简单,便于理解,请详细展示计算过程。
  • :基础版在线性规划与中的应
    优质
    本文章介绍了单纯形算法的基础理论,并探讨了其在解决线性规划问题及对偶单纯形法中的具体应用和实现方法。 基本单纯形算法用于辅助线性规划和对偶单纯形的实现。
  • C语言
    优质
    本文章介绍了如何使用C语言编程来实现对偶单纯形法,一种用于求解线性规划问题的有效算法。通过具体代码示例和理论解析相结合的方式,详细阐述了该方法的具体步骤与操作技巧。适合希望深入了解优化算法及其程序设计的读者学习参考。 这个程序非常好用,输入方便且计算准确,是运筹学课程中的必备工具。
  • 关于的计分析
    优质
    本研究探讨了对偶单纯形法在求解线性规划问题中的应用与优化策略,通过深入的计算分析,旨在提高算法效率和适用范围。 对偶单纯形法的计算解析由吕秀杰和马申提出。解线性规划问题的单纯形法的基本思路是:从原问题的一个基可行解出发,判断所有检验数cj-zj是否小于或等于0(其中j=1,2,...,n)。如果满足这一条件,并且基变量中没有非零值,则计算结束。
  • Python修正QT界面设计
    优质
    本项目采用Python编程语言,实现了修正单纯形算法求解线性规划问题,并结合QT框架开发了图形用户界面,便于用户交互操作和结果可视化。 基于Python的修正单纯形法实现(包含Qt界面),该实现不包括退化情况。
  • MATLAB
    优质
    本文章介绍了如何使用MATLAB编程语言来实现线性规划中的单纯形算法,并提供了具体的代码示例和步骤说明。 这段文字描述的是用MATLAB编写的一个单纯形法程序。该程序完全按照最优控制指导教材中的理论步骤进行编写,并且每一步的结果都有详细给出,确保没有错误。
  • 优质
    本文章介绍了如何实现单纯形算法,包括其基本概念、步骤及应用领域。通过具体示例和代码演示了优化问题中的求解过程,帮助读者理解并掌握这一经典算法。 用MATLAB实现单纯形算法。单纯形算法主要用于解决大型线性规划方程组问题。
  • Python(一)
    优质
    本篇文章主要介绍了如何在Python中使用单纯形法解决线性规划问题的基础知识和实现步骤,是该系列文章的第一篇。 本段落提供的单纯形法Python实现基于sympy和numpy库。使用前请确保安装了相关库。 优点:可以直接输入目标函数和不等式约束的原形式。 缺点(BUG):所有变量必须大于等于0,未解决全为等式的约束条件情况 注意:对于等式约束,例如x1+x2=5 ,其代码输入格式应为c0 = (x1 + x2, 5)。 安装相关库: ``` pip install numpy pip install sympy ``` 单纯形法Python实现的代码详见simplex.py文件。该代码经过测试,确保无误。 算例请参见提供的示例。
  • 网络的MATLAB:网络-MATLAB开发
    优质
    本项目旨在通过MATLAB语言实现网络单纯形算法,提供一个高效的线性规划问题求解工具。用户可利用此代码解决各类网络流优化问题,并进行算法研究与应用探索。 考虑一个有向图,该图包含N个顶点以及M条弧,并且这些顶点用数字1到N来标记。给定的弧具有容量、顶点的需求函数及弧的成本函数,从而定义了流网络的概念。此功能用于计算特定流网络中的最小成本流。 输入参数包括: - 矩阵a:这是一个大小为N×N的矩阵,其中每个元素a(i,j)代表从顶点i到顶点j之间的弧ij的容量。 - 向量d:这是由整数构成的一个长度为N的向量。它定义了各个顶点的需求函数;如果d(i)>0,则表示该节点是一个需求节点(需从其他地方获取流量);反之,若d(i)<0,则这个顶点被视作供给节点(需要向外提供流量)。所有顶点的需求和供应总和为零。 - 矩阵g:同样也是一个N×N的矩阵,其元素g(i,j)代表弧ij的成本。 输出参数: - minf:这是最终计算得到的一个大小也为N×N的结果矩阵。其中每个元素minf(i,j)表示从顶点i到j之间的最小成本流的具体值。