Advertisement

Linear Algebra (Springer, 2018)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本书《线性代数》由Springer于2018年出版,系统介绍了线性代数的基本理论和应用技巧,适合高等院校数学及相关专业的学生与教师参考使用。 This book presents the fundamental concepts, techniques, and results of linear algebra that serve as a foundation for analysis, applied mathematics, and algebra. It is designed for undergraduate students in mathematics, science, and engineering who have knowledge of set theory. The text focuses on the concepts frequently utilized by scientists and engineers while laying the groundwork for modern analysis and its applications. The book consists of seven chapters covering topics such as vector spaces, linear transformations, best approximation in inner product spaces, eigenvalues and eigenvectors, block diagonalization, triangularization, Jordan form, singular value decomposition, polar decomposition, among others. These topics have been well-established over time and continue to be relevant today. The approach taken is both geometric and algebraic. Exercises are placed at the end of each section to reinforce learned concepts without focusing on computational tricks. The problems provided at the end of each chapter are more advanced and require a deeper understanding and mastery of the material covered.

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Linear Algebra (Springer, 2018)
    优质
    本书《线性代数》由Springer于2018年出版,系统介绍了线性代数的基本理论和应用技巧,适合高等院校数学及相关专业的学生与教师参考使用。 This book presents the fundamental concepts, techniques, and results of linear algebra that serve as a foundation for analysis, applied mathematics, and algebra. It is designed for undergraduate students in mathematics, science, and engineering who have knowledge of set theory. The text focuses on the concepts frequently utilized by scientists and engineers while laying the groundwork for modern analysis and its applications. The book consists of seven chapters covering topics such as vector spaces, linear transformations, best approximation in inner product spaces, eigenvalues and eigenvectors, block diagonalization, triangularization, Jordan form, singular value decomposition, polar decomposition, among others. These topics have been well-established over time and continue to be relevant today. The approach taken is both geometric and algebraic. Exercises are placed at the end of each section to reinforce learned concepts without focusing on computational tricks. The problems provided at the end of each chapter are more advanced and require a deeper understanding and mastery of the material covered.
  • Linear Algebra Introduction
    优质
    Linear Algebra Introduction是一门基础课程,介绍向量、矩阵和线性方程组等核心概念,为理解高级数学及应用领域(如计算机科学、物理学)打下坚实的基础。 最近需要使用线性代数的相关知识,在网上找到了《Introduction to Linear Algebra》这本书(作者是Gilbert Strang),介绍得非常清晰且到位。我搜集了一些资源,包括第三版、第四版以及讲课笔记。听说第三版比较经典,所以我暂时只上传了第三版和笔记。虽然书本内容为英文版本,但学过线性代数的人应该都能理解,并且这本书的重点不是讲解方程或矩阵变化等内容,而是强调线性代数的一些重要意义。如果有需要的话,我推荐大家看一下这本书。
  • Linear Algebra Introduction.pdf
    优质
    《Linear Algebra Introduction》是一本初学者指南,系统介绍了线性代数的基础概念和应用技巧,适合数学、计算机科学等专业的学生阅读。 Gilbert Strang的书革新了学习线性代数的方法,本书是其第三版。
  • Doing Linear Algebra Wrong.pdf
    优质
    《Doing Linear Algebra Wrong.pdf》探讨了线性代数学习与教学中常见的误区和错误观念,并提供纠正建议,帮助读者深入理解和正确应用线性代数原理。 一本非常适合初学者学习线性代数的外国书籍。
  • Linear Algebra Introduction [Fifth Edition]
    优质
    《线性代数导论(第五版)》系统地介绍了线性代数的基本理论和方法,内容涵盖向量空间、矩阵运算、特征值与特征向量等核心概念。 《线性代数导论》第五版,作者Gilbert Strang的习题答案。
  • Advanced Linear Algebra (GTM135).pdf
    优质
    《Advanced Linear Algebra》(GTM135)是一本深入探讨线性代数高级主题的专业书籍,适合数学专业研究生学习。书中涵盖了向量空间、线性变换及矩阵理论等核心内容,并引入了更抽象的概念如模论与张量积,为读者提供全面而系统的知识体系。 GTM135 Advanced Linear Algebra.pdf
  • Matrix Analysis and Linear Algebra Applications
    优质
    《Matrix Analysis and Linear Algebra Applications》深入探讨了矩阵理论及其在线性代数中的应用,涵盖基础概念、高级主题以及在工程和科学领域中的实际案例。 这是一本经典的线性代数教材,作者是Carl D. Meyer。全书共分八个章节:第一章介绍Linear equations;第二章讨论Rectangular Systems and Echelon Forms;第三章讲解Matrix Algebra;第四章探讨Vector Spaces;第五章涵盖Norms, Inner Products, 和Orthogonality;第六章分析Determinants;第七章深入Eigenvalues和Eigenvectors的理论;第八章则研究Perron-Forbenius Theory。
  • 线性代数(Linear Algebra
    优质
    线性代数是数学的一个分支,研究向量、向量空间(或称线性空间)、线性变换和有限维线性方程组等。它是许多领域如物理学、工程学及计算机科学的基础工具。 线性代数是数学的一个分支,主要研究向量空间(或称线性空间)以及其上的线性变换。它在计算机科学、物理学和其他工程领域有着广泛的应用。线性代数的核心概念包括矩阵理论、行列式、向量和向量空间等。这些工具为解决现实世界中的复杂问题提供了强大的手段,例如数据处理、图像压缩和机器学习等领域都离不开线性代数的支持。
  • Linear Algebra Done Right 3rd Edition
    优质
    《线性代数应该这样学(第三版)》是一本深入浅出介绍线性代数核心概念的经典教材,适合数学及相关专业学生学习。 《线性代数应该这样学》第三版是一本哈佛大学使用的线性代数教材,提供英文数字版本,并包含目录。
  • Schaums Outline of Linear Algebra (6th Edition)
    优质
    《Schaums Outline of Linear Algebra》第六版是一本线性代数学习指南,提供了大量习题和解答,帮助学生深入理解和掌握线性代数的核心概念与技巧。 最新版本包含612道练习题,并附有详细的分步解答;每个课程概念都配有简洁明了的解释。