Advertisement

风电机组的SCADA数据监测。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
数据以每秒一次的频率进行采集。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • SCADA
    优质
    风电机组SCADA数据是指通过 Supervisory Control and Data Acquisition(监督控制和数据采集)系统收集的关于风电设备运行状态的各项实时监测信息。这些数据涵盖发电量、温度、转速等关键参数,对于优化风机性能、预测维护需求及提升风电场整体运营效率至关重要。 2021年收集了近两万条风电机组数据,每十分钟采集一次,共涉及21个参数。
  • 2021年SCADA
    优质
    本资料集包含了2021年间各类风力发电机的详细SCADA(监控与数据采集)系统记录,涵盖运行状态、故障预警及性能分析等多维度信息。 每十分钟采集一次数据,共收集四万多组数据。
  • 力发SCADA
    优质
    本资料深入探讨了风力发电机组中的SCADA(监控与数据采集)系统及其应用。通过分析实时数据,优化风机性能和维护计划。 每秒采集一次数据。
  • 力发课程设计
    优质
    《风力发电机组监测课程设计》旨在通过理论与实践相结合的方式,教授学生如何对风力发电设备进行有效的监控和维护,确保其高效运行。 【风力发电机监测课程设计】是一门以实践为导向的教学项目,旨在通过使用可编程逻辑控制器(PLC)来实现对风力发电机的监控与控制。该课程的主要目的是让学生掌握风力发电系统的运行机制,理解PLC在工业自动化中的应用,并锻炼实际操作和问题解决的能力。 设计内容涵盖了多个关键环节,包括控制系统选型。在这个阶段,学生需要根据风力发电机的工作特性选择合适的PLC型号。例如,在本项目中选择了三菱FX3U系列的PLC,该型号以其稳定性、灵活性以及丰富的功能模块而被广泛应用于工业自动化领域。FX3U PLC的主要特点是高速处理能力、内置网络功能和多样化的I/O接口,适合复杂的控制系统。 接下来是控制过程与原理的探讨。风力发电机的工作依赖于实时监测风速数据,并通过算法计算出最佳的发电转速及叶片角度以确保在不同风况下高效工作。这一过程中包括信号采集、数据处理以及输出控制指令等环节。 经济效益分析也是设计的一部分,需要考虑PLC方案的成本效益比,如设备成本、安装调试费用和运行维护成本,并预测其长期节能效果与增效潜力。精确计算可以证明自动化控制系统对于提高风力发电效率及降低运营成本的重要性。 系统分析则涉及对整个风力发电机系统的深入了解,包括机械结构、电气系统以及液压系统等组成部分。其中,液压系统负责叶片的变桨控制以确保风轮始终迎向最佳方向捕获更多能量。学生需要分析这些子系统的性能参数如压力、流量和响应速度,并在设计PLC策略时做出合理决策。 控制系统的设计是课程的核心部分,要求编写PLC程序实现对风力发电机各部件的精准控制,包括但不限于启动停止控制、偏航及变桨等功能模块。其中偏航系统通过检测风向信号驱动马达调整叶片方向以确保最大能量捕获效率。 此项目不仅需要学生具备扎实理论基础,并能将其应用于实际工程问题中实现智能监控和高效利用风力资源的目标,从而提升学生的工程技术思维、编程技巧及解决问题的能力,为未来从事自动化领域职业发展奠定坚实的基础。
  • 状态与故障分析
    优质
    《风电机组状态监测与故障分析》一书聚焦于风电行业的技术挑战,深入探讨了如何通过先进的监测技术和数据分析方法来预防和解决风力发电机组运行中的各类问题。本书为工程师及研究人员提供了一套全面的理论框架与实践指南,旨在提升风电机组的可靠性和经济效益。 随着全球对清洁能源需求的不断增长,风能作为一种清洁、可再生且无污染的能源形式,在电力生产中的重要性日益提升。然而,风力发电系统的技术复杂性和运行环境不确定性带来了新的挑战,特别是在风电机组的状态监测与故障诊断方面。本段落将深入探讨这一领域的相关知识,包括技术原理、实施案例以及面临的挑战。 ### 风电机组状态检测的重要性 对风电机组进行状态检测是通过实时或定期采集其各种运行参数(如振动、温度和压力等),来评估机组的健康状况,并实现早期故障预警。有效的状态监测有助于减少非计划停机时间,提高设备可靠性和经济效益。这不仅能够避免因突发故障导致的高昂维修成本,还能延长风电机组使用寿命并优化维护策略。 ### 风电机组故障诊断技术 在风电监控领域中,故障诊断技术扮演着关键角色。它基于状态检测数据,运用数据分析、模式识别和机器学习算法等手段自动识别潜在故障,并预测可能发生的故障类型及位置。近年来,随着大数据与人工智能技术的发展,风电机组的故障诊断能力显著提升: - **振动分析**:监测机组振动信号以发现转子不平衡、齿轮箱磨损或轴承损坏等问题。 - **油液分析**:通过检查润滑油中的金属碎片和其他污染物来评估齿轮箱和轴承健康状况。 - **温度监控**:监测发电机及变流器等关键部件的温度,预防过热引发故障。 - **电气性能分析**:对电流、电压与功率等参数进行检测以识别电气系统的异常情况。 ### 工程实例 Enercon E-66 是一款典型的水平轴风电机组,具有98米高的塔架和70米直径的转子。该机型采用先进的状态监测系统,能够实时收集并分析包括振动、温度及电气性能参数在内的各种传感器数据,实现对机组全面监控。例如,通过振动分析可提前发现齿轮箱潜在问题;而温度监测则有助于防止发电机过热。这些信息被传输至中央控制室进行进一步分析,并在检测到异常时立即启动故障诊断流程。 ### 风电技术面临的挑战 尽管风力发电展现出巨大潜力,在环保和经济性方面具有明显优势,但其发展仍面临一些挑战: 1. **波动的电源**:由于风速不稳定导致输出功率变化较大,对电网稳定运行构成挑战。 2. **高昂初始投资**:建设与安装成本较高,需要长时间才能实现投资回报。 3. **生态环境影响**:早期设计可能威胁鸟类迁徙路径,但现代大型低速机组已显著减少这种风险。 4. **视觉和噪音污染**:风电机组的建设和运行可能会对当地景观造成影响,并产生一定水平的声音干扰。 ### 结论 风电机组状态检测及故障诊断是风电监控领域的重要技术,对于保障系统稳定运行、降低维护成本以及提高能源效率具有重要意义。通过应用先进的监测技术和数据分析方法可以有效预防和解决潜在问题,推动风电行业的可持续发展。随着技术创新不断推进,未来风电机组的状态检测与故障诊断能力将进一步提升,并为风力发电的广泛应用奠定坚实基础。
  • SCADA运行集-147万条记录
    优质
    该数据集包含147万条风电场SCADA系统采集的数据记录,涵盖风力发电机组的关键运行参数和状态信息,适用于数据分析、故障诊断及性能优化研究。 时间 B17.UC_ScadaActivePowerSetpoint B17.CI_YawBrakePressure3 B17.CI_TowerClearanceHb B17.CI_SubVibNacelleForeAftAcceleration B17.S_ShaftPowerSetpointTarget B17.CI_PcsActivePower B17.CI_PcsMeasuredGeneratorSpeed B17.CI_PcsMeasuredElectricalTorque B17.CO_PcsTorqueDemand B17.CI_TowerClearanceValue B17.CI_TowerClearanceValid B17.CI_RotorSpeed B17.CI_RotorSpeed2 B17.CI_SubVibNacelleSideSideAcceleration B17.CI_NacellePosition B17.CI_NacelleAutoKeySwitch B17.CI_HydraulicPowerPackPressure B17.CI_IprRealP
  • 振动系统硬件架构设计
    优质
    本项目专注于风电机组振动监测系统的硬件架构设计,旨在通过优化传感器布局与数据采集模块,提升风电设备运行状态监控的准确性和实时性,保障风电场安全高效运营。 风电机组振动状态监测系统硬件架构设计旨在实时监控与分析风电机组的振动状况,确保其安全性和可靠性。本段落将详细介绍该系统的硬件架构设计,涵盖系统结构、数据通信方案、传感器类型、数据采集设备以及服务器等方面。 **一、 系统构成** 此监测体系主要由四部分组成:传感器(用于捕捉振动信号)、数据采集仪(负责收集和处理这些信号)、服务器(存储并分析所获取的数据)及通讯装置。其中,通过安装在风电机组上的各类传感器可以实时感知其运行时产生的振动情况;而专门设计的数据采集设备则能高效地捕获、整理这些原始信息,并将其传输至中央数据库即服务器;此外,在远程诊断中心,技术团队可以通过互联网接收来自各台机组的监测数据进行综合分析与处理。 **二、 数据通信机制** 该系统的数据交换主要涉及两个环节:首先是位于现场的数据采集仪和本地服务器之间的直接通讯连接,其次是后者与远端故障排查站点间的网络传输。前者利用内置模块化的硬件配置确保了振动信号能够被即时捕捉并上传至中央存储单元;而通过互联网技术,则实现了跨地域的远程数据交换及后续的专业解析工作。 **三、 传感器类型** 在风电机组监测中,主要采用两类传感器:一是用于检测振动幅度变化的加速度计(包括低频和高频两种型号),二是专门测量转速参数的速度感应器。这些精密仪器能够精准地捕捉到各种环境下的细微波动,并为后续分析提供详实的数据支持。 **四、 数据采集设备** 作为整个系统的关键组件之一,数据采集仪不仅具备强大的信号收集能力,还内置了相应的存储和传输功能模块,确保所有关键信息都能被妥善记录并及时发送给上级服务器。其设计充分考虑到了现场条件的复杂多变性,并通过优化配置实现了高效且稳定的运行表现。 **五、 服务器** 作为系统的中枢大脑,专用的工业级服务器承担着海量振动数据的安全保存和深入解析任务。它不仅能够迅速响应前端设备上传的数据流进行实时处理,还具备强大的远程协作能力以支持跨区域的技术交流与合作需求。 综上所述,风电机组振动状态监测系统通过集成先进的硬件设施和技术手段来实现对机组运行状况的全面掌控,并以此为基础保障其长期稳定运作。
  • 速与输出功率.csv
    优质
    该文件包含了不同风速条件下风电机组的输出功率数据,适用于研究风电性能、优化发电效率及分析风力发电系统的工作特性。 2012年全年风电场的风速数据(每5分钟测量一次)共有105,121个记录,包括出力数据[m/s]。表格包含以下列:Year、Month、Day、Hour、Minute、power (MW) 和 wind speed at 100m (m/s)。
  • 迅速构建物联网与Web SCADA工控态系统
    优质
    本项目致力于快速搭建物联网电力监控及Web SCADA工业控制组态系统,实现远程实时数据采集、分析和可视化展示,提高能源管理效率。 效果展示:电力检测所需的硬件拓扑图设备层包括智能仪表和其他检测设备;传输层使用通讯网关进行协议转换;交互层则涵盖了现场检测、大屏展示以及远程维护功能。 在完成硬件部署之后,我们可以在平台上构建所需系统。首先需要增加协议通道,大多数智能仪表采用的是Modbus协议,平台已经很好地集成了这一标准。对于现场工程师来说,在配置每种仪表中地址变量的对应关系时会遇到一些麻烦,通常需要查阅厂家说明书来解决这些问题。 幸运的是,该平台已为各种仪表建立了配置模板,我们可以通过设备模板快速建立设备变量地址,并重复此操作以完成所有设备地址变量的配置。这样一来,从智能仪表采集的数据就可以显示出来,并且还可以通过计算公式对数据进行进一步处理和分析。
  • 力发侧控制及与控制MATLAB源码.zip
    优质
    本资源包含风力发电机组机侧控制系统设计及相关监测算法的MATLAB代码,适用于研究和教育用途。 风力发电机组机侧控制与监测及相应的MATLAB源码。