Advertisement

数学建模基金使用规划

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
数学建模基金使用规划旨在探讨并制定有效策略,以确保数学建模领域的研究与教育项目获得充足的财务支持,促进该领域的发展和创新。 数学建模基金的使用计划包括了对基金、存款以及国库券的投资,并且还涵盖了奖金分配的相关安排。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 使
    优质
    数学建模基金使用规划旨在探讨并制定有效策略,以确保数学建模领域的研究与教育项目获得充足的财务支持,促进该领域的发展和创新。 数学建模基金的使用计划包括了对基金、存款以及国库券的投资,并且还涵盖了奖金分配的相关安排。
  • 电源与MATLAB应.zip_MATLAB电源__MATLAB仿真_电源系统
    优质
    本书聚焦于运用数学建模和MATLAB技术解决电源系统规划中的复杂问题。内容涵盖模型构建、仿真分析及优化策略,旨在为电力工程领域的研究人员和技术人员提供实用的工具与方法。 给出具体的电源规划问题解决方案,并使用MATLAB程序语言进行编写。
  • 路径方法
    优质
    路径规划的数学建模方法探讨了如何运用数学模型解决机器人、车辆导航等领域中的路径优化问题,涵盖图论、最短路径算法等技术。 数学建模中的0-1模型可以应用于旅游路线设计的问题上。通过建立一个二元变量的优化模型,我们可以有效地解决旅行商问题(TSP),即如何规划一条最短路径以访问所有预定的城市并返回起点的问题。在该模型中,“0”代表不选择某条特定线路,“1”则表示选择了这条线路。这样可以根据实际需求和约束条件来设计最优旅游路线。 此建模方法不仅适用于城市间的旅行,还可以扩展到景点之间的游览规划上,在考虑时间、费用以及个人兴趣等因素的基础上,帮助游客制定个性化的行程安排方案。
  • 线性与LINGO在中的应
    优质
    本课程介绍线性规划的基本概念及其在解决实际问题中的应用,并深入讲解如何利用LINGO软件高效求解各类线性优化模型,为参加数学建模竞赛的学生提供有力工具。 Lindo 和 Lingo 是由美国 Lindo 系统公司开发的一套专门用于求解最优化问题的软件包。其中,Lindo 适用于解决线性规划及二次规划问题;而 Lingo 则在具备 Lindo 功能的基础上,扩展了非线性规划、方程(组)求解等功能。 这两款软件的一大亮点在于能够处理整数决策变量,并且运行效率高。实际上,Lingo 还是一种优化模型的建模语言,内置了许多常用的函数供用户构建模型时调用,同时支持与其他数据文件如文本段落件、Excel电子表格和数据库等进行交互操作,方便大规模问题的数据输入与求解。 由于上述特性,Lindo 系统公司的线性规划、非线性和整数规划程序已被全球众多公司用于最大化利润或最小化成本的分析。其应用领域广泛涵盖了生产线布局优化、运输调度、财务金融管理、投资组合构建、资本预算制定以及混合排程和库存控制等。 作为专业的最优化软件,Lindo/Lingo 的功能全面且效果显著,在与包含部分优化能力的一般性软件对比中通常占据优势地位。此外,该系列软件使用简便易学,并在个人电脑上的优化工具市场占有重要份额;在国外运筹学教材中的应用也十分广泛。
  • 线性实例分析
    优质
    《线性规划数学建模实例分析》一书通过具体案例深入浅出地讲解了如何运用线性规划方法解决实际问题,是学习和应用运筹学知识的良好参考。 本段落通过一个实例介绍了如何建立线性规划问题的数学模型。
  • 中的线性与整及LINGO软件.zip
    优质
    本资料深入讲解了数学建模中常用的线性规划和整数规划方法,并详细介绍了如何使用LINGO软件进行模型求解,适用于学习优化理论和解决实际问题的读者。 LINGO软件是由美国LINDO系统公司开发的主要产品。LINGO是Linear Interactive and General Optimizer的缩写,意为交互式的线性和通用优化求解器。它可以用于解决非线性规划问题,并且可以用来求解一些线性和非线性方程组的问题,功能非常强大,是处理优化模型的最佳选择之一。其特点在于内置了建模语言和十几个内部函数,支持整数决策变量(包括0-1整数规划),使用起来既灵活又高效。此外,LINGO还能够方便地与Excel和其他数据库软件进行数据交换。
  • Matlab解决线性问题
    优质
    本项目运用MATLAB软件工具,针对各类线性规划问题进行数学建模与求解。通过优化算法的应用,旨在提高模型的精确度和效率。 了解Matlab中的线性规划基础知识以及linprog等相关命令的格式。学习并掌握如何使用MATLAB求解线性规划问题。
  • 入门指南:Lingo解决问题
    优质
    本指南旨在帮助初学者掌握使用LINGO软件解决各类优化和规划问题的方法,涵盖线性、非线性和整数规划等模型构建技巧。 ### 数学建模-初学小白:从Lingo学起的规划问题求解 #### 重要知识点概述 本段落探讨了两种类型的优化问题:0-1规划模型与整数规划模型。这两种模型通常用于解决实际生活中的决策问题,例如资源分配、路径规划等。通过具体的案例分析,本段落详细介绍了如何构建模型并利用LINGO软件求解。 #### 0-1规划模型与整数规划模型 **0-1规划模型**:这是一种特殊的整数规划模型,其中所有决策变量只能取0或1的值。这种模型特别适合处理那些“是否”类型的问题,即某个决策是否被执行。 **整数规划模型**:这是指在一般的线性规划基础上增加了整数约束的一类模型。在实际应用中,很多时候决策变量不能取非整数值,比如人员数量、设备数量等。 #### 求解优化策略问题 - **平板车装箱的最优装载问题** - **模型建立**:将平板车的可用空间视为一个三维空间(长度×宽度×高度),而每个包装箱占据一定的空间体积。决策变量是每个包装箱放置的数量。 - **目标函数**:以浪费的空间体积最小为目标函数。 - **约束条件**:包括但不限于平板车的最大承载重量、长度和宽度限制、包装箱的尺寸限制等。 - **求解方法**:通过LINGO软件求解整数规划模型。 - **展厅监控的最优安装方案问题** - **模型建立**:每个监控摄像头可以覆盖一定的区域,决策变量是每个位置安装的监控摄像头数量。 - **目标函数**:以安装的监控摄像头数量最少为目标函数。 - **约束条件**:确保每个展厅都被至少一个监控摄像头覆盖。 - **求解方法**:通过LINGO软件求解0-1规划模型。 #### 模型求解过程 - **平板车装箱问题** - **决策变量**:x_i (i = 1, 2, ..., n),表示第i个包装箱放置的数量。 - **目标函数**:最小化浪费的空间体积,即 minimize (sum_{i=1}^{n} (V_{\text{max}} - V_i \cdot x_i)),其中(V_{\text{max}}) 表示平板车的最大可用空间体积,(V_i)表示第i个包装箱的体积。 - **约束条件**:重量限制(sum_{i=1}^{n} W_i \cdot x_i \leq W_{\text{max}}),长度限制(sum_{i=1}^{n} L_i \cdot x_i \leq L_{\text{max}}) 和高度限制 (sum_{i=1}^{n} H_i \cdot x_i \leq H_{\text{max}})。 - **展厅监控问题** - **决策变量**:y_i (i = 1, 2, ..., m),表示第i个位置是否安装监控摄像头(0或1)。 - **目标函数**:最小化安装的监控摄像头数量,即 minimize (sum_{i=1}^{m} y_i)。 - **约束条件**:对于每个展厅j (j = 1, 2, ..., k),至少有一个位置安装了监控摄像头:(sum_{i \in S_j} y_i \geq 1),其中(S_j)表示覆盖展厅j的所有可能位置集合。 #### 模型的优点与局限性 **优点** - 明确的目标函数有助于找到最优解。 - 灵活的约束条件能够适应各种实际情况。 - 利用LINGO等软件可以快速求解复杂模型。 **局限性** - 实际情况往往比模型更复杂,可能存在无法完全准确反映的因素。 - 对于非常大的问题,计算时间可能会很长。 - 需要一定的数学基础来理解和构建模型。 #### 结论与展望 通过本研究,我们不仅解决了平板车装箱与展厅监控的具体问题,还展示了如何利用0-1规划模型和整数规划模型解决实际生活中的决策问题。这些方法不仅可以应用于物流和安全领域,还可以扩展到其他许多方面,如生产调度、网络设计等。未来的研究可以进一步探索更多类型的优化问题及其解决方案,提高模型的适用性和灵活性。
  • 线性实验报告
    优质
    本实验报告聚焦于运用MATLAB等软件工具进行线性规划问题的数学建模与求解,通过实际案例分析,探讨模型构建、优化算法及其在工程管理和经济学中的应用。 某厂生产甲乙两种口味的饮料。每百箱甲饮料需用原料6千克、工人10名,并可获利10万元;而每百箱乙饮料则需要5千克原料,20名工人,可以获利9万元。工厂现拥有原料共60千克和工人150名。此外,由于其他条件限制,甲饮料的产量不能超过8百箱。请问如何安排生产计划(即两种饮料各应生产多少),才能使利润最大化? 进一步讨论: 1)如果投资0.8万元可以增加原料1千克,是否应该进行这项投资? 2)若每百箱甲饮料获利可增至1万元,是否会改变原有的生产计划。 使用线性规划方法解决上述问题时,代码如下:c=[-10 -9];A=[6 5; 10 20; 1 0];b=[60; 150;8];Aeq=[];beq=[];vlb=[0; 0];vub=[];[z0,fval]=linprog(c,A,b,Aeq,beq,vlb,vub)。
  • 线性案例分析
    优质
    《线性规划的数学建模案例分析》一书通过精选的实际问题,深入浅出地介绍了如何运用线性规划理论建立有效的数学模型,并给出了解决方案的具体步骤和方法。 线性规划是一种优化方法,在一系列线性约束条件下最大化或最小化一个目标函数的问题上非常有用。在精炼食品油生产的数学建模实例中,这种方法用于确定原料采购与加工策略以实现利润的最大化。 模型构建基于以下假设和条件: 1. 企业需要处理两类原料油共五种(植物油和非植物油)。 2. 每个月的原材料价格波动,并且有明确市场预测。 3. 精炼过程中无质量损失,两种类型的油需在不同的生产线加工。 4. 生产线产能有限制,每月能处理的植物油与非植物油量也有限制。 5. 存储成本为每吨每月50元,存储量也有上限。 6. 成品油硬度应在3至6之间,并假设其由原料油混合而成是线性的。 7. 初始库存为每种原材料500吨,在六月底时需要保持相同的水平。 8. 成品油售价固定,但原料价格随市场变化而波动。 为了构建这个模型,我们需要定义决策变量、目标函数和约束条件: 决策变量代表可以调整的操作参数。在这个例子中,可能包括每个月购买的每种原材料的数量以及加工数量。 目标函数是需要最大化或最小化的值,在这里是指总利润,等于销售收入减去采购成本和存储成本。 线性规划模型中的约束条件如下: - 生产线产能限制:每月植物油与非植物油加工量不超过特定数值。 - 储存容量限制:每种原材料的储存量不能超过1000吨。 - 成品油硬度要求:成品油硬度应在3至6之间,由原料油决定。 - 初始和最终库存水平保持一致的要求。 - 总产量不应超出2700吨限制。 - 原材料购买量必须满足或超过成品总量需求。 使用Matlab的linprog函数可以将模型转换为线性规划问题并求解。Linprog需要输入目标函数系数、约束矩阵以及不等式和等式的右端常数,还要指定决策变量的上下界限制。 在实际应用中,通过编写m-脚本段落件如oil_prog1.m, oil_prog2.m 和oil_prog3.m可以计算不同情况下最优策略。例如,oil_prog1.m可能用于确定固定市场价格下的最大利润;而oil_prog2.m和oil_prog3.m分别研究利润与原料价格增长率之间的关系以及如何调整成品油价格和存储成本来增加利润。 通过运行这些m-脚本段落件,企业可以获得针对各种市场情况的生产计划。例如,当成品油的价格增长率达到一定水平时,继续生产可能会导致亏损。 总之,在食品油生产的线性规划应用展示了如何运用数学模型优化复杂的生产决策过程,并考虑了包括成本、产能限制和价格波动在内的多种因素。这为企业提供了定量化的决策支持工具。通过使用Matlab软件可以高效解决这些模型问题,帮助企业实现利润最大化的目标。