Advertisement

大功率LED升压恒流源设计(含原理图、PCB、源程序等)-电路方案

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目提供了一种高效的大功率LED升压恒流源设计方案,包含详细的原理图、PCB布局及源代码。适合需要稳定电流驱动大功率LED的应用场景。 大功率LED升压恒流源电路功能概述:本设计基于BOOST升压电路设计了一种能够调控电流的大功率恒流LED系统。硬件部分采用11.2-18V的可变直流电压输入,控制两个串联的12V/3A LED灯,并使通过LED灯的电流从0.2A到3A可调(由于限流器限制,实际最大调节值为1.6A)。此外,该系统还具备输入欠压保护和输出过压保护功能。软件部分采用飞思卡尔FRDM-KL25Z芯片,并利用PI算法完成设计任务。通过上位机可以改变LED灯的电流大小,通信方式使用无线串口。 在视频演示中,首先测试了系统的输入欠压保护及恢复机制,随后分别对0.2A、0.4A、0.7A、0.9A、1A、1.4A和1.6A这几种不同电流值进行了验证。原计划继续测试至3A的电流范围,但由于当时只找到了一个限流为3A的电压源,所以未能完成全部测试。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • LEDPCB)-
    优质
    本项目提供了一种高效的大功率LED升压恒流源设计方案,包含详细的原理图、PCB布局及源代码。适合需要稳定电流驱动大功率LED的应用场景。 大功率LED升压恒流源电路功能概述:本设计基于BOOST升压电路设计了一种能够调控电流的大功率恒流LED系统。硬件部分采用11.2-18V的可变直流电压输入,控制两个串联的12V/3A LED灯,并使通过LED灯的电流从0.2A到3A可调(由于限流器限制,实际最大调节值为1.6A)。此外,该系统还具备输入欠压保护和输出过压保护功能。软件部分采用飞思卡尔FRDM-KL25Z芯片,并利用PI算法完成设计任务。通过上位机可以改变LED灯的电流大小,通信方式使用无线串口。 在视频演示中,首先测试了系统的输入欠压保护及恢复机制,随后分别对0.2A、0.4A、0.7A、0.9A、1A、1.4A和1.6A这几种不同电流值进行了验证。原计划继续测试至3A的电流范围,但由于当时只找到了一个限流为3A的电压源,所以未能完成全部测试。
  • 20V 4A/数控的DIYPCB)-
    优质
    本项目详细介绍了一个20V 4A恒压/恒流数控电源的设计,包括完整的工作原理说明、PCB布局和源代码。适合电子爱好者和技术人员学习参考。 美国Vicor公司是全球领先的高密度电源模块生产商,并且也是唯一能够大规模生产采用零电压、零电流技术的电源模块的企业。该公司生产的电源模块包括DC-DC转换器、AC-DC转换器,以及隔离式与非隔离式的电源变换器。其中,“零电流”开关技术使得Vicor公司的产品能够在1MHz的工作频率下实现超过80%的效率。 在《无线电》杂志2010年11期的一篇文章中介绍了一种数控电源,该设备主要利用MCU生成PWM波形并通过调整占空比来调节输出电压。然而,这款自制的数控电源则采用高精度DAC产生基准电压,并通过改变这一基准值来控制输出电压的变化;其稳压功能则是依靠运放实现的。 此外,此款电源还集成了ADC用于采样输出电压和电流数据,并使用12864液晶屏进行显示。该设备所使用的元器件均为高端产品:基准源包括REF191和198型号,DAC为TLV5618型,而ADC则采用了ADS7841;运放方面则选用了AD620与OPA2277。 这款数控电源的参数如下: - 输出电压范围从0至20伏特可调 - 输出电流可在0至4安培范围内调节 - 设备具备三档快速设置选项,分别为3.3、5和12伏特 - 支持恒压模式与恒流模式,并能实现两者之间的自动切换 在设计过程中,首先制作了控制部分。虽然没有严格按照书中描述的单独构建一个控制面板,而是搭建了一个ATMega16最小系统板并将所需的接口引出。 电源的最大输出电流为4安培,整流管采用的是常见的6A10型号;另外还安装有两个CR12AM单向可控硅用于输入电压切换。具体工作原理如下:当输出电压高于8伏特时,MCU会发送信号使这两个可控硅导通,并将变压器的24V绕组接入电路中以提供电力供应。 相反地,在输出电压低于8伏特的情况下,则不触发上述操作;此时12V抽头通过6A10整流桥为整个系统供电。这样做的目的是为了防止在低电压高电流条件下调整管产生过大的功耗问题。
  • APW7137模块PCB)-
    优质
    本项目提供了一套详细的APW7137升压模块设计方案,包括完整的电路原理图及PCB布局文件。适合需要高效电源管理的电子设备应用。 项目目前处于样品制作阶段,后续会继续更新相关信息。
  • UC3842模块在LED反激式中调试成PCB文件-
    优质
    本项目展示了如何使用UC3842芯片实现LED反激式电源中的恒流恒压控制,并包含完整的PCB工程文件和电路设计细节。 UC3842 是一种用于开关电源的电流控制型脉宽调制集成电路,在负载响应及线性调整度等方面优于电压控制方式。本段落档介绍的是基于TI 芯片 UC3842 和 LM358 设计的LED 反激式恒流恒压电源模块。 UC3842 恒流恒压模块典型应用电路为 LED 反激式电源,其工作原理如下: UC3842 采用固定频率脉冲宽度调制方式,并有八个引脚。各引脚功能如下: - 第1 脚:误差放大器的输出端,连接外部阻容元件以改善误差放大器的增益和频率特性。 - 第2 脚:反馈电压输入端,该脚电压与内部基准电压(2.5V)进行比较,产生控制脉冲宽度所需的误差信号。 - 第3 脚:电流检测输入端,在此引脚上的检测电压超过1V 时会减小输出脉冲的宽度,使电源进入间歇工作状态以保护电路免受过载影响。 - 第4 脚:定时器输入端,内部振荡频率由外部连接电阻和电容决定(f=1.72/(RT×CT))。 - 第5 脚:公共地端。 - 第6 脚:推挽输出端,采用图腾柱式结构驱动能力为±1A,并且上升下降时间仅为50ns。 - 第7 脚:直流电源供电端,具有欠压、过压锁定功能以及芯片功耗仅需 15mW。 - 第8 脚:5V 基准电压输出端,可提供高达 50mA 的负载能力。
  • 数控解决
    优质
    本方案专注于数控恒压恒流电源的设计与实现,提供详尽的电路原理图和实用的设计建议,旨在优化电源性能,满足高精度、高效能的应用需求。 在深入讲解数控恒压恒流电源设计解决方案之前,我们需要了解一些基础概念和原理。直流稳压电源是电子实验中的重要设备之一,它能为电路提供稳定的电压输出,在众多的电源设计方案中,恒压恒流电源因其性能稳定而被广泛应用。 一个标准的恒压恒流电源结构主要包括电压基准源、调整管、误差放大器、电压取样和电流取样几个部分。其中,电压基准源向误差放大器提供准确且稳定的参考电压,并对温度变化不敏感。通过将取样电路与误差放大器及调整管组合形成一个闭环回路,可以确保输出电压的稳定性。这一结构的特点在于:由于电压基准源和取样电路是固定的,因此输出电压以及最大输出电流也是固定的。 为了调节电源的输出电压和限制电流的最大值,一些设计采用了可变电阻的方法。例如,在图示的基本稳压电源简图中通过改变R3阻值来调整输出电压范围,这种方法在诸如LM317这样的可调稳压芯片应用广泛。这类芯片通常还集成了过热保护等附加功能,然而当负载发生变化时,这些集成的温度控制措施可能会导致性能不稳定。 为解决这个问题可以采用高性能电压基准如LM399和LTZ1000来提供更稳定的参考电压,尽管价格较高但能有效提升电源稳定性。传统的调节方法通过改变取样电阻阻值调整输出电压虽然成本较低,但在长时间使用后可能因机械接触不良导致输出异常。 随着技术的进步,高端的数控稳压电源开始采用数字控制的方法,如Agilent E3640A这类产品能够通过按键或旋转编码器设定电压和电流值,有效避免了传统调节方式带来的风险。然而这些设备通常只能提供离散的电压点设置,并不具备连续输出能力。 本段落介绍了一种新的数控恒压恒流电源设计方案,该方案具备多种先进特性:如0至20V可调范围、步进值为0.05V以及小于±10mV的输出误差;电流设定从零到三安培之间变化,步长设置为0.01A且显示精度保持在±5mA以内。此外还具备低纹波输出特性,并支持参数记忆和使能功能。 制作数控恒压恒流电源的关键在于理解其工作原理。首先将220V交流电通过变压器T1降压至交流12V,再利用桥式整流电路转换成直流电压。VD1至VD4组成的桥式整流器是电子学中的基础组件之一,用于实现从交流到直流的转变。 电源输出调节通常依靠改变取样电阻阻值来完成,这使得输出电压具备可调性;射极跟随器因其接近恒定放大倍数(大约为1)而被广泛使用,在计算中可以忽略其影响。整流后的直流电通过运算放大器根据参考电压进行调整后送至负载。 设计时需精心选择和配置每个组件以确保良好的恒压及恒流效果,例如采用ICL7107这样的专业测量芯片来保证输出值的准确性;同时添加过热保护、短路检测等安全机制也是必要的。此外,通过12864液晶显示器实时显示电源状态(如电压与电流读数)为用户提供直观反馈并便于监控和调整。 综上所述,数控恒压恒流电源不仅在性能方面达到了高标准,在用户体验设计上也提供了便利性和可靠性保障。
  • 自制LED
    优质
    本项目详细介绍了一种高效能的大功率LED恒流驱动电路的设计与制作方法,旨在为电子爱好者和工程师提供一个稳定、高效的照明解决方案。 恒流源可以分为线性恒流源和开关恒流源两种类型。线性恒流源的电路设计较为简单,制作容易,但其效率较低,不适合用于电池供电系统中。
  • BLE插座能量监测仪PCB)-
    优质
    本项目设计了一款基于BLE技术的智能电源插座能量监测仪,具备能耗监控与远程控制功能。详细资料包括电路原理图、PCB布局及源代码,适用于智能家居系统开发。 TIDC-BLE-METER-READING 参考设计采用 SimpleLink CC2650 多标准无线 MCU 和相应的 SensorTag 模块,侧重于通过蓝牙低功耗 (BLE) 链路从能源监测设备读取数据的应用。该模块随后连接到 TI 设计 TIDM-3OUTMSTSTRP 的硬件(稍作修改),作为计量数据源。此设计还包括一个充当远程读取器和控制端的 Android 应用。 能量监控系统的设计框图包括以下重要芯片: TPD1E10B06:单通道 ESD 保护二极管,采用 0402 封装,具有 10pF 的电容和 6V 的击穿电压。 TPS77010:50mA、低 Iq 和低压降线性稳压器 (LDO)。 TPS796:超低噪声、高 PSRR、快速射频的 1A 低压降线性稳压器 (LDO)。 ULN2003LV:7 通道中继和电感负载下沉式驱动器。 其它接口包括: CC2650 SimpleLink 多标准 2.4 GHz 超低功耗无线 MCU MSP430I2041 和 MSP430i2040 混合信号微控制器,基于 MSP430 超低功耗 MCU。
  • 优质
    本资源提供详细的恒压恒流电源工作原理图解及电路设计说明,帮助读者理解其内部构造与运行机制。适合电子工程学习者和技术爱好者参考使用。 ### 恒压-恒流电源的原理及应用 #### 一、概述 在电子技术领域,恒压-恒流电源是一种重要的供电装置,在实验室、生产线测试以及电子产品开发等多个方面得到广泛应用。这类电源能够根据负载变化自动调整输出特性,确保不同工作条件下稳定可靠地提供电力供应。本段落将详细探讨这种电源的原理图构成及其工作方式,并介绍其中涉及的关键元件和技术要点。 #### 二、原理图分析 ##### 1. 扩展电流部分 - **组件**:主要由两只并联连接的功率晶体管(如3CF5型号)组成。 - **作用**:通过这种方式增加电流承载能力,支持大负载需求。 - **工作原理**:当负载增大时,这两只晶体管会共同分担电流负担,避免单个器件过热损坏。 ##### 2. 限流电阻R3 - **作用**:限制电路中的最大允许电流值,保护后续组件免受损害。 - **工作原理**:一旦检测到超过设定的最大电流阈值时,该电阻上的电压降会增加,并触发相应的安全机制以减少输出电流。 ##### 3. 电流调节电位器R2 - **作用**:调整电路的恒流输出范围。 - **工作原理**:通过改变R2阻值来控制反馈信号强度,进而设定所需的稳定电流水平。 ##### 4. 电压调节电位器R - **作用**:设置和调整电源的输出电压大小。 - **工作原理**:通过改动R的电阻值可以微调反馈回路中的参考电压,从而精确地控制最终输出端口的电力供应量。 ##### 5. 大电流集成稳压源与恒流源 - **工作原理**:这两种类型的电源都采用了闭环控制系统来自动调整其状态以保持稳定的电压或电流水平。它们通过实时监测并反馈调节来维持设定参数的一致性。 #### 三、工作原理详解 ##### 1. 恒压模式 - 在恒压操作中,可以通过改变电压调节点R的设置值来确定一个固定输出电平。当负载变化导致实际输出偏离这个目标时,控制系统会相应地调整功率晶体管的状态以恢复至预设值。 ##### 2. 恒流模式 - 同样,在需要恒定电流供给的情况下,则通过调节电阻R2的阻值得到所需的稳定电流水平设定。一旦检测到负载变化引起实际输出与期望值之间的差异,反馈回路同样会修正功率晶体管的工作状态以确保持续稳定的电流供应。 #### 四、应用场景 - **实验室设备供电**:在实验室内许多精密仪器都需要一个非常可靠的电源来保证测试结果的准确性。 - **电子产品生产测试**:生产线上的恒压-恒流电源能够为待测产品提供一致且安全的操作环境,帮助工程师快速地验证产品的性能特性。 - **电池充电管理**:对于那些需要精确控制充放电过程的应用场合而言(比如对多节串联锂电池组的维护),这类高效稳定的电源设备可以确保电池系统在最佳条件下完成整个循环。 #### 五、扩展知识点 ##### 1. 功率晶体管的选择 - 在设计此类供电装置时,选配合适的功率晶体管非常关键。这包括考虑其最大电流承载能力和最高允许工作温度等因素。 ##### 2. 反馈控制策略 - 反馈控制系统是实现恒压或恒流输出的核心技术。常见的反馈机制有基于电压和电流的两种类型,分别适用于不同模式下的精确调节。 ##### 3. 安全保护措施 - 在提高系统安全性和可靠性方面同样重要的是加入诸如过载、短路等异常情况的安全防护功能设计,防止意外损害发生时造成更大损失。
  • TDA2030 30W 音频详解,/PCB/BOM-
    优质
    本资料详尽解析TDA2030 30W音频功放的设计,包含工作原理、电路图、PCB布局及物料清单等信息,适用于音响爱好者与电子工程师。 本设计分享的是基于TDA2030音频功率放大器的设计方案,并附有原理图、PCB图及物料清单(BOM)。该音频功率放大器采用双电源±12V供电,前级使用高速高带宽高压摆率TP1272-S作为放大。后端则由恩智浦的3PEAK高精密双运放和DA2030组成,具有极低温漂、超低偏置及高抗干扰能力的特点。该功率放大器驱动的是30W、4~8欧姆的喇叭,能够清晰地再现高低音效果,并且耐听无破音。 TDA2030音频功率放大器实物图和BOM清单已提供。
  • TL494PCB
    优质
    本项目旨在设计基于TL494芯片的升压电源电路板(PCB)原理图,涵盖电路分析、元件选型及电气参数计算等关键步骤。 TL494升压电源PCB原理图设计已经完成,并且电路经过测试可以正常使用。