Advertisement

双目的立体匹配

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
《双目的立体匹配》是一篇探讨利用计算机视觉技术进行深度信息提取的研究文章。通过分析两个或多个视点获取的图像,构建三维空间模型,实现对真实场景的感知与理解。该方法在自动驾驶、机器人导航和虚拟现实领域有广泛应用价值。 双目立体匹配涉及视差生成深度的公式以及全局方法的应用。 在处理过程中,数据项体现了像素间的匹配程度,而平滑项则反映了场景定义中的约束条件。其中C表示的是匹配代价(或称penalty),P则是不同两像素p和q之间视差差异的函数,通常被称为平滑项。 由于能量优化问题在一维空间内的复杂度呈现多项式级增长,一些研究试图采用近似方法以降低算法计算量。例如,半全局算法(SGM)利用了这一点,将二维问题简化为8到16个一维子问题来处理,从而实现效率提升。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    《双目的立体匹配》是一篇探讨利用计算机视觉技术进行深度信息提取的研究文章。通过分析两个或多个视点获取的图像,构建三维空间模型,实现对真实场景的感知与理解。该方法在自动驾驶、机器人导航和虚拟现实领域有广泛应用价值。 双目立体匹配涉及视差生成深度的公式以及全局方法的应用。 在处理过程中,数据项体现了像素间的匹配程度,而平滑项则反映了场景定义中的约束条件。其中C表示的是匹配代价(或称penalty),P则是不同两像素p和q之间视差差异的函数,通常被称为平滑项。 由于能量优化问题在一维空间内的复杂度呈现多项式级增长,一些研究试图采用近似方法以降低算法计算量。例如,半全局算法(SGM)利用了这一点,将二维问题简化为8到16个一维子问题来处理,从而实现效率提升。
  • 视觉程序
    优质
    双目视觉的立体匹配程序是一种模拟人类双眼感知深度和距离的技术方法。通过分析两个不同视角拍摄到的图像,计算像素对应关系以生成深度信息图,广泛应用于机器人导航、AR/VR及自动驾驶等领域。 使用MATLAB进行双目立体视觉的深度信息匹配,并最终导出彩色深度图。
  • Middlebury 测试数据集
    优质
    Middlebury 数据集是国际上公认的评估 stereo matching(双目视觉深度估计)算法性能的金标准。它提供了高质量的图像对和精确的 ground truth 深度图,促进了计算机视觉领域的发展。 双目立体匹配测试数据集Middlebury Stereo Datasets包括了2003年、2005年和2006年的三部分数据集。2001年和2014年的数据集下载失败,现分享给大家。
  • 校正与测距中应用
    优质
    本研究聚焦于双目视觉系统中的关键问题——图像校正及立体匹配技术,探讨其在精确距离测量中的重要性及其优化方法。 本段落讨论了算法在双目立体视觉以及双目测距中的应用,包括双目校正和立体匹配,并附带了一些测试图片。
  • SGM算法在应用
    优质
    本研究探讨了SGM算法在双目视觉系统中实现高精度深度信息提取的应用,重点分析其优化过程及在实际场景中的性能表现。 在KITTI2015数据集上对SGM算法进行测评的结果如下: 开发环境:Python 3.6、NumPy 1.19.5、OpenCV-python 4.5.5.64;操作系统为Ubuntu 20.04LTS,处理器型号为Intel(R) Core(TM) i7-9700 CPU @ 3.00GHz。 实验记录: 1. 使用WTA和SSD策略,设置disparity=190、radius=3时,视差误差≤3的精度为0.5611,运行时间为7.4344秒; 2. 同样使用WTA和SSD策略但将disparity调整至64,在相同的radius设定下(即3),视差误差≤3的精度保持在0.5611不变,但是运行时间缩短到了2.7495秒; 3. 采用SGM与SSD结合的方式,并设置disparity=64、radius=3时,视差误差≤3的精度提高到0.8161,相应的计算耗时增加至22.7137秒; 4. 当使用SGM和NCC策略且保持参数disparity为64、radius设定为3不变的情况下,视差误差≤3的精度进一步提升到了0.8119,但运行时间延长到28.0640秒; 5. 最后,在选择SGM与SAD组合,并维持相同的配置(即disparity=64和radius=3),此时视差误差≤3的精度下降至0.6681,而计算所需的时间为22.3349秒。
  • 视觉标定、与重建
    优质
    本研究聚焦于双目立体视觉技术,涵盖其标定方法优化、特征匹配算法提升及三维场景重建策略探索,旨在提高图像识别精度和效率。 一个博士生完成了一项基于计算视觉的双目立体视觉的人脸三维重建项目,该项目功能齐全且适合初学者学习与参考,并附带技术文档以帮助理解相关概念和技术细节。
  • 基于SIFT算法系统
    优质
    本项目开发了一种基于SIFT算法的双目立体视觉系统,用于高效准确地计算场景深度信息。该系统利用图像特征点匹配实现高精度的三维重建与测量。 基于SIFT的OpenCV双目立体匹配系统在VS2013 MFC环境中实现。
  • 基于C++算法程序
    优质
    本程序采用C++语言开发,实现高效准确的双目立体视觉中的立体匹配算法,适用于计算机视觉领域中深度信息提取和三维重建任务。 双目立体匹配是计算机视觉领域中的一个重要课题,主要用于获取场景的三维信息。在这个主题中,我们将深入探讨双目立体匹配的基本概念、相关算法以及C++实现的关键步骤。 双目立体匹配是一种基于两个不同视角(通常称为左眼和右眼图像)的图像处理技术,通过寻找图像对中对应像素的最佳匹配来估算深度信息。这种技术广泛应用于机器人导航、自动驾驶和3D重建等领域。 1. 双目立体匹配原理: - 基线与视差:两个相机之间的距离被称为基线,由于视角不同,在两幅图像中的同一物体位置会有差异,这一差异称为视差。 - 立体匹配:通过计算每像素的视差来建立像素级深度图。每个像素的深度与其在另一幅图像中对应的匹配像素的位置相关联。 - 匹配准则:常用的匹配准则是SAD(绝对差值和)、SSD(平方误差和)以及NCC(归一化互相关系数)。 2. 算法流程: - 相机标定:首先需要进行相机标定,以获取内参与外参数。这一步通常使用牛顿-拉弗森迭代方法或张氏标定方法完成。 - 图像预处理:包括灰度化、直方图均衡和去噪等步骤来提高图像质量。 - 匹配成本计算:为每个像素在另一幅图像中找到匹配位置,并计算其匹配代价,可以使用上述的SAD、SSD或NCC准则进行评估。 - 成本聚合:通过梯度下降法、动态规划或者立体匹配网络等方式减少错误匹配的可能性。 - 视差优化:采用自适应阈值和连续性约束等策略来剔除错误匹配,并最终生成深度图。 3. C++实现的关键点: - 使用OpenCV库:OpenCV提供了丰富的图像处理与计算机视觉函数,包括相机标定、图像预处理及匹配成本计算等功能。 - 多线程与并行计算:为了提高效率,在计算匹配代价和优化视差时可以利用OpenMP或CUDA进行并行化操作。 - 数据结构设计:例如使用立体匹配图(cost volume)存储每个像素的可能匹配位置,便于后续聚合及优化处理。 - 实时性优化:对于实时应用而言,需要注意算法复杂度与内存占用问题,并根据实际需求调整精度以提高速度。 4. 文件结构分析: 在名为StereoCalibMatch的文件中很可能会包含相机标定和立体匹配过程的相关代码。可能包括以下几个部分: - 相机参数计算函数:用于获取内参及外参数。 - 图像处理程序:进行灰度化、直方图均衡等操作以提升图像质量。 - 匹配成本模块:为每个像素计算与另一幅图像中对应位置的匹配代价。 - 成本聚合和视差优化部分:减少错误匹配,提高深度图准确性。 - 显示及输出功能:展示并保存结果,如生成深度图。 双目立体匹配算法涉及多个复杂的步骤从相机标定到最终视差优化每个环节都需要精确处理。在C++中实现这一算法需要深入理解计算机视觉理论,并熟练掌握图像处理和性能优化技巧。
  • 基于OpenCV3.1测距与技术
    优质
    本项目采用OpenCV3.1库实现双目视觉系统中的测距和立体匹配算法,旨在精确测量物体距离并生成深度图。 这是我双目测距中的立体匹配的代码,用于得到视差图,并通过三维重建获取视差图中的世界坐标系的坐标。使用的是OpenCV3.1版本。
  • 测试数据集与视差图
    优质
    本研究介绍了用于评估和比较不同算法性能的双目视觉系统中的立体匹配测试数据集及其生成的视差图像。 用于双目立体匹配的测试数据集整合了2001、2003、2005和2006四年的数据,并包含标准视差图。