Advertisement

关于模糊控制在车辆自动驾驶前车跟随中的应用研究.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文探讨了模糊控制技术在自动驾驶汽车中前车跟随场景的应用,分析其优势与局限,并提出改进方案以提升系统性能和安全性。 本段落探讨了基于模糊控制的车辆自动驾驶前车跟随技术的研究进展与应用方法,旨在提高智能驾驶系统在复杂交通环境下的适应性和安全性。通过对现有文献和技术方案进行分析总结,提出了一种改进型的模糊控制器设计思路,并通过仿真试验验证其有效性及优越性。该研究为未来进一步开展相关领域工作提供了理论参考和实践依据。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本文探讨了模糊控制技术在自动驾驶汽车中前车跟随场景的应用,分析其优势与局限,并提出改进方案以提升系统性能和安全性。 本段落探讨了基于模糊控制的车辆自动驾驶前车跟随技术的研究进展与应用方法,旨在提高智能驾驶系统在复杂交通环境下的适应性和安全性。通过对现有文献和技术方案进行分析总结,提出了一种改进型的模糊控制器设计思路,并通过仿真试验验证其有效性及优越性。该研究为未来进一步开展相关领域工作提供了理论参考和实践依据。
  • 路径型预测
    优质
    本研究聚焦于自动驾驶领域中的路径跟踪技术,通过开发先进的模型预测控制系统,旨在提高车辆在复杂驾驶环境下的导航精确度与安全性。 在自动驾驶技术的研究领域内,针对自动驾驶车辆路径规划的轨迹跟踪问题是一个亟待解决且需要优化的关键课题。本段落基于模型预测控制(Model Predictive Control, MPC)理论展开研究,具体探讨了以下三个方面的内容:首先,为了解决自动驾驶车辆对预定路径进行有效追踪的问题,引入传统的MPC理念,并设计了一套适用于该场景的轨迹跟踪策略;其次,在解决路径跟随过程中出现的稳定性差和适应目标速度变化能力不足等问题时,进一步提出了采用终端状态等式约束的改进型MPC方法;最后,在研究中为了提升车辆在跟随过程中的响应速度与稳定性能,提出了一种结合预测时间范围内系统输入输出收缩限制(Predictive Input and Outputs Contractive Constraint, PIOCC)的MPC轨迹跟踪控制策略。
  • 调头问题.pdf
    优质
    本文针对自动驾驶场景下的车辆调头问题进行了深入研究,探讨了在不同道路条件下优化调头路径及提高安全性的方法和技术。 自动驾驶是近年来人工智能研究的一个热门领域,在这一背景下车辆调头问题成为了一个非常实际且具有挑战性的场景。本段落围绕无人车在自动驾驶中的调头问题进行了深入探讨,并建立了多种数学模型,包括普通调头轨迹、避开人行通道的调头轨迹及避障调头轨迹等。 通过对附件数据进行处理并重新设定直角坐标系后,我们可以将车辆运动分解为x和y方向。基于无人车独特的转向特性,我们构建了一个三阶段的调头路径模型,并通过仿真模拟展示了不同场景下的应用结果(如图3、4所示)。 为了确定控制点的位置,在考虑了各种弧度变化的情况下,计算出了无人车与障碍物之间的最短距离(见图5)。当需要满足所有可能的角度时,我们发现控制点的y坐标需至少为15.8米。这表明在设定调头路径时必须充分考虑到安全因素。 对于问题二,在原有模型的基础上增加了新的边界限制条件,并分析了不同转弯角度对左右边界的距离影响,从而判断是否需要倒车(见图6)以确保行驶的安全性与可行性。 当涉及到障碍物的避让时,我们分别考虑了仅存在F和D、G和D以及所有障碍同时存在的几种情况(如图7至9所示)。通过调整模型参数,使无人车能够有效避开这些静态或动态移动中的潜在危险区域,并保证其路径规划的安全性和有效性。 进一步地,在问题四中探讨了结合人行通道与障碍物的综合影响。当仅有D和人行道时,我们提出了新的修正方案(如图10所示);而面对全部存在的复杂情况,则进行了更深入的模型优化处理,以确保无人车能够顺利避开所有潜在威胁。 针对动态变化中的障碍物问题,在第五个研究阶段中设计了G和F两个障碍物的具体移动路径,并据此更新了原有的避障策略(见图12)。采用遍历算法来寻找最优解,使车辆在复杂环境中仍能实现高效且安全的调头操作。 最后,通过使用七段S型曲线模型分析求解效率与时间之间的关系,确定了解决方案的最佳执行周期长度(如图13所示),这为提高无人车的实际应用性能提供了重要的参考依据。 综上所述,本段落的研究成果不仅为解决自动驾驶中的车辆调头问题提供了一套全面且高效的解决方案,同时也为进一步推动该领域的技术进步奠定了坚实的理论基础。
  • 神经网络系统.pdf
    优质
    本论文深入探讨了神经网络技术在现代列车自动驾驶系统中的应用潜力与实现方式,旨在提高系统的安全性和运行效率。通过分析和实验验证,提出了一种基于深度学习算法优化列车控制策略的新方法。 基于神经网络的列车自动驾驶控制算法研究这一论文探讨了如何利用先进的神经网络技术来提升列车自动控制系统的表现与安全性。通过深入分析现有的技术和方法,并结合实际应用案例,该研究提出了一种创新性的解决方案,旨在优化列车运行效率、提高乘客舒适度并确保行车安全。
  • 无人轨迹型预测.zip
    优质
    本研究探讨了在无人驾驶领域中利用模型预测控制技术进行车辆轨迹跟踪的方法与应用,旨在提升自动驾驶系统的稳定性和安全性。 基于模型预测控制的无人驾驶车辆轨迹跟踪问题研究
  • 技术
    优质
    本研究聚焦于汽车自动驾驶领域中模糊控制技术的应用与优化。通过智能算法模拟人类驾驶决策过程,提升车辆在复杂交通环境下的适应性和安全性,推动自动驾驶技术的进步与发展。 模糊控制利用模糊数学原理来模拟人类思维过程,识别并判断模糊现象,并提供精确的控制量以实现对被控对象的有效管理。
  • 联网与Vissim交通仿真.pdf
    优质
    本文探讨了利用Vissim软件对车联网及自动驾驶汽车在复杂道路交通环境下的运行进行仿真的方法和结果分析,为智能交通系统的开发提供理论支持。 本段落档探讨了基于Vissim的车联网及自动驾驶车辆交通仿真的研究方法和技术细节。通过结合先进的车联网技术和自动驾驶技术,该仿真模型能够有效地模拟复杂的道路交通环境,并为交通安全、效率以及智能化出行提供有价值的参考数据与理论依据。
  • LQR轨迹设计.pdf
    优质
    本文探讨了利用线性二次调节器(LQR)技术优化自动驾驶汽车的路径追踪控制系统的设计与实现,以提升行驶稳定性和响应速度。 为了提高智能车的控制精度,以碰撞中心(Center of Percussion, COP)为参考点建立前馈-反馈控制模型,并利用该模型求解LQR(线性二次调节器)问题,获得状态反馈控制率,从而实现最优控制。
  • MPC局部避障路径规划及路径
    优质
    本研究探讨了模型预测控制(MPC)技术在自动驾驶汽车中用于局部障碍物回避路径规划和实时路径追踪的应用效果与优化策略。 在自动驾驶车辆行驶过程中,障碍物会对安全构成较大威胁。因此,在遇到障碍物的情况下需要重新规划参考路径,确保新路径能够避开这些障碍,并且让车辆严格遵循新的路线来避免事故的发生。 本段落研究了如何通过模型预测控制(MPC)理论解决自动驾驶技术中的局部避障路径规划和路径跟踪问题,以保证在存在障碍的场景下,自动驾驶汽车的安全性和操控稳定性。
  • LQR轨迹设计
    优质
    本研究提出了一种基于线性二次型调节器(LQR)的自动驾驶车辆轨迹跟踪控制方案,旨在提高车辆在复杂环境下的行驶稳定性和路径跟随精度。 为了提高智能车的控制精度,以碰撞中心为参考点建立了前馈-反馈控制模型,并用该模型求解LQR问题,获得状态反馈控制率,从而实现最优控制。在双移线工况和8字形工况下,使用Matlab/Simulink与Carsim对LQR轨迹跟踪控制器进行了联合仿真。