Advertisement

光电技术和光电探测器器件模拟中的工艺参数研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
图1展示了TSMC 0.35微米CMOS工艺条件下光电探测器的器件模拟。具体而言,图1(a)描绘了工作二极管响应电流与施加的反压之间的关系曲线。该图包含三条曲线,分别对应于在无光照、光照强度分别为1 W/cm²和25 W/cm²,以及光波长为0.85微米时工作二极管的响应电流。计算结果表明,当输入光功率为4 pW(-23 dBm)和100 pW(-10 dBm)时,二极管面积为20×20微米时,无光照的响应电流(暗电流)约为10-15 A的数量级。在光照强度为1 W/cm²时,产生了0.16 μA的光电流,相应的响应度为0.04 A/W。而当光照强度达到25 W/cm²时,则产生了4.8 pA的光电流,此时响应度为0.048 A/W。值得注意的是,后者完全能够满足…

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 影响
    优质
    本研究探讨了在光电技术领域内,不同工艺参数对光电探测器性能的影响,并通过器件建模与仿真分析,为优化设计提供理论依据。 图1展示了TSMC 0.35μm CMOS工艺参数下光电探测器的器件模拟结果。其中,图1(a)显示了工作二极管在不同光照条件下的响应电流与外加反压的关系曲线。这三条曲线分别代表无光照、光强为1W/cm²和25W/cm²时的情况,且光波长固定为0.85μm。当以20×20 μm²的二极管面积计算输入光功率分别为4 pW(-23 dBm)和100 pW(-10 dBm),图中可以看出在无光照条件下响应电流接近暗电流,约为10^-15A的数量级。当光照强度为1 W/cm²时产生的光电流大约是0.16 μA,对应的响应度为0.04 A/W;而光强增加到25W/cm²时,光电流增至约4.8 pA,此时的响应度上升至0.048 A/W。后者能够满足特定需求。
  • 性能分析
    优质
    本论文聚焦于光电技术领域中的核心元件——光电探测器,深入探讨其关键性能参数及其相互影响。通过详细解析各种指标如响应度、量子效率及噪声等,旨在为光电系统的优化设计提供理论指导与实践参考。 光电探测器的性能参数主要包括量子效率、响应度、频率响应、噪声以及探测度。其中,量子效率与响应度反映了光电探测器将入射光转换为电流的能力;频率响应则体现了其工作速度的快慢;而噪声和探测度指标则决定了该设备能够检测到最小的入射光能量水平。
  • 在二维结构
    优质
    本研究聚焦于二维材料中光电探测器的设计与性能优化,通过计算机仿真探索其内部结构和工作原理,以期推动新型光电器件的发展。 图1展示了在器件模拟软件Atlas中的输入结构、外加电压示意图以及通过二维模拟得出的pn结位置和耗尽区位置。从该图可以看出,N阱与P+区域构成一个二极管,称为工作二极管D;而N阱与衬底则形成另一个二极管,称为屏蔽二极管Ds。在衬底深处产生的光生载流子会被屏蔽二极管的耗尽区吸收,无法扩散到工作二级管内。因此,在工作二极管内部没有长距离扩散的光生载流子,只有N阱内的短途扩散载流子存在,从而提高了该二极管的速度。 从图中可以看出,当N阱上的耗尽区(即P+和N阱形成的区域)增大时,进入工作二级管D中的光生载流子的扩散成分会减少,并且速度也会提高。为了实现这一目标,在实际CMOS工艺中需要使N阱的掺杂水平与衬底相当以获得轻掺杂的I区,但这在实践中是很难做到的。 此外,制作过程中还需考虑其他因素的影响。
  • APD
    优质
    APD探测器是一种利用雪崩光电二极管技术增强信号接收能力的高性能光电子器件,广泛应用于通信、激光雷达和粒子物理实验中。 虽然PIN结构通过扩展空间电荷区提高了工作速度和量子效率,但它无法放大光生载流子,导致信噪比和灵敏度不够理想。为了探测微弱的入射光,我们希望光电探测器具有内部增益机制,在倍增电场的作用下少量光生载流子可以产生较大的电流。雪崩光电二极管(APD)正是这样一种器件,它通过雪崩电离效应实现内部增益和放大功能。 在APD中,当正向偏置电压足够高时,在PN结附近形成一个强电场区域。光生电子和空穴在此区域内被加速至足够的能量水平以产生碰撞电离现象:即载流子获得的能量足以使晶格中的束缚电子脱离原子核的吸引力并进入导带,从而生成新的自由电子-空穴对。这些新产生的载流子同样会被电场加速,并继续与晶格发生碰撞,进一步引发更多的雪崩倍增效应。 通过这种方式,APD能够显著提高光电探测器的整体性能,在低光强条件下提供更高的灵敏度和响应速度。
  • GaN PIN在显示与应用结构
    优质
    本研究探讨了GaN PIN光电探测器在显示及光电技术领域的应用结构,分析其性能优势和潜在应用场景。 GaN PIN光电探测器是显示与光电技术领域中的关键传感器件,在紫外光检测方面具有显著优势。PIN结构(即P型-本征-N型结构)因其独特的性能在提高器件效率上表现出众。 以下是关于GaN PIN光电探测器的详细说明及其优点: 1. **低暗电流**:由于较高的势垒,这种类型的光电探测器可以减少无光照条件下的电流流动。这有助于降低噪声水平,在没有光源的情况下提高了信号与噪音的比例,使检测更加灵敏。 2. **高速响应**:高阻抗特性使得PIN结构的GaN光电探测器能够快速响应光强度的变化,从而提高其工作速度。这对于需要实时监测的应用至关重要。 3. **适应焦平面阵列读出电路**:由于其高阻抗特点,该类型的器件可以与大规模并行检测系统中的焦平面阵列读出电路兼容,适用于紫外光谱仪或天文观测设备等应用。 4. **量子效率和响应速度可调**:通过调整本征层厚度来改变探测器的量子效率及响应时间。这使得设计者可以根据具体需求优化器件性能。 5. **低偏压操作能力**:GaN PIN光电探测器能够在较低电压甚至零电压下工作,从而降低电源消耗并提高能源使用效率。 在制造过程中,通常包括以下步骤: - 在蓝宝石衬底上沉积20nm厚的低压缓冲层,以提供良好的晶格匹配和生长基础。 - 接着,在上面沉积500nm厚的n型Al0.5Ga0.5N层作为导电层,增加材料的电导率。 - 然后,生长本征层Al0.4Ga0.6N。该步骤中,通过调整铝含量从50%到40%,形成17nm厚的过渡层以减少缺陷并优化异质结势垒。 - 接下来,在上面沉积100nm厚的掺Mg p型Al0.4Ga0.6N层用于形成P-N结,并提供必要的电荷载流子。 - 最后,添加5nm薄p型GaN层以改善欧姆接触并减少光吸收。 在触点部分使用半透明NiAu作为P型接触和TiAu作为N型接触确保良好导电性的同时允许光线通过。 综上所述,通过精心设计的PIN结构与材料组合,GaN PIN光电探测器实现了高效、高速的紫外光检测能力,并广泛应用于环境监测、生物医学检测以及安全监控等领域中,对推动显示和光电技术的进步具有重要意义。
  • PIN
    优质
    PIN光电探测器是一种高性能半导体光电器件,具备高灵敏度和快速响应特性,在光纤通信、光电传感及太阳能电池等领域有着广泛应用。 尽管这种材料体系的PIN结构通常仅使用AlGaSb组成,但掺入少量砷可以减少晶格失配问题。该材料采用液相外延(LPE)方法,在350至500摄氏度下生长于GaSb衬底上;较低温度用于生成重掺杂P型结构,较高温度则用于形成N型结构,并通过碲和锗的掺入实现N型与P型的掺杂。 基于该材料体系制造出的二极管如图1(a)所示,其异质结由GaSb和AlGaSb组成,在量子效率达到54%的同时响应波长范围为1至1.7微米。通过在异质结构之间添加一层本征AlGaSb层来构建PIN结构,如图1(b)所示,并使响应波长降低到1.3微米;而图1(c)展示的结构中,该二极管的本征层由两种不同组分比例的AlGaAsSb材料构成。这种设计不仅提升了击穿电压水平,还有效降低了相关参数值。
  • 纤仿真_纤激_纤锁_锁
    优质
    本项目专注于激光光纤仿真的理论与实践研究,涵盖光纤激光器及光纤锁模技术,并深入探索锁模激光器的工作原理和应用潜力。 超快光纤激光器模拟采用NALM锁模方式。
  • 采用硅基CMOS集成
    优质
    本研究聚焦于基于硅基CMOS工艺的集成光电探测器的设计与制造,旨在推动高性能、低成本光电子集成电路的发展。 CMOS工艺是一种重要的微电子制造技术,具有成本低廉、可批量生产以及高成品率的优点。早期的CMOS工艺通常采用单阱工艺,这种工艺只包含一个阱(N型或P型)。如果使用的是P型衬底,则将NMOS直接制作在衬底上,并且将PMOS制作在N阱中;如果是N型衬底,则会把NMOS制造于P阱内,而PMOS则直接制作在衬底上。为了减少闩锁效应并独立优化N沟道和P沟道器件的性能,人们采用了双阱工艺。图1展示了典型的双阱CMOS结构,包括N阱、P阱、局部氧化硅(LOCOS)隔离层、多晶硅栅以及源漏区等组成部分。 常见的双阱CMOS工艺流程如下: - 第一步:通过轻掺杂扩散形成N型和P型的深井。