Advertisement

EL6270C 激光二极管驱动芯片数据表(完整版)

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本数据表提供EL6270C激光二极管驱动芯片的详细技术规格和应用指南,涵盖电气特性、操作模式及接口说明。 EL6270C激光二极管驱动芯片是一款高性能的单通道功率调节器和振荡器,专为接地阴极的激光二极管和光电二极管系统设计。该芯片内置自动功率控制器(APC),根据目标光电二极管输出电流设定激光二极管输入电流,并提供高达100毫安直流电。此外,EL6270C还配备了一个可编程片上振荡器以调制输出激光电流,通过外部两个电阻控制其幅度和频率。 芯片具有禁用功能,在此模式下电源电流降至5微安以下,大幅减少功耗。封装形式为8脚SOIC(小外形集成电路),在睡眠模式下的功率消耗同样低于5微安。振荡器的最高频率可达400兆赫,并能提供100毫安峰值到峰值电流。 工作电压范围是单+5伏(±10%)。EL6270C广泛应用于DVD-ROM驱动器、CD-ROM驱动器、通信激光驱动和激光二极管电流切换等领域。芯片的订购型号包括温度范围为-40°C至+85°C或0°C到+70°C,采用SOIC或MSOP封装。 电气参数中包含极限最大额定值(绝对最大额定值),如Vs(CE,LSI)和IOUT功耗限制、工作环境温度范围等。在允许的工作条件下,电流可达100毫安直流平均值,并且设计者应检查芯片修订版本信息以确保正确使用。 所有参数均有最小与最大值要求,在实际应用中需严格遵守这些规定。绝对最大额定值定义了施加于Vs(CE,LSI)和IOUT上的电压范围及功耗限制,同时指明环境温度、结温和存储温度的允许范围。了解并遵循EL6270C数据表中的电气与物理参数将有助于工程师在设计中充分发挥激光二极管驱动能力,并优化相关设备性能表现。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • EL6270C
    优质
    本数据表提供EL6270C激光二极管驱动芯片的详细技术规格和应用指南,涵盖电气特性、操作模式及接口说明。 EL6270C激光二极管驱动芯片是一款高性能的单通道功率调节器和振荡器,专为接地阴极的激光二极管和光电二极管系统设计。该芯片内置自动功率控制器(APC),根据目标光电二极管输出电流设定激光二极管输入电流,并提供高达100毫安直流电。此外,EL6270C还配备了一个可编程片上振荡器以调制输出激光电流,通过外部两个电阻控制其幅度和频率。 芯片具有禁用功能,在此模式下电源电流降至5微安以下,大幅减少功耗。封装形式为8脚SOIC(小外形集成电路),在睡眠模式下的功率消耗同样低于5微安。振荡器的最高频率可达400兆赫,并能提供100毫安峰值到峰值电流。 工作电压范围是单+5伏(±10%)。EL6270C广泛应用于DVD-ROM驱动器、CD-ROM驱动器、通信激光驱动和激光二极管电流切换等领域。芯片的订购型号包括温度范围为-40°C至+85°C或0°C到+70°C,采用SOIC或MSOP封装。 电气参数中包含极限最大额定值(绝对最大额定值),如Vs(CE,LSI)和IOUT功耗限制、工作环境温度范围等。在允许的工作条件下,电流可达100毫安直流平均值,并且设计者应检查芯片修订版本信息以确保正确使用。 所有参数均有最小与最大值要求,在实际应用中需严格遵守这些规定。绝对最大额定值定义了施加于Vs(CE,LSI)和IOUT上的电压范围及功耗限制,同时指明环境温度、结温和存储温度的允许范围。了解并遵循EL6270C数据表中的电气与物理参数将有助于工程师在设计中充分发挥激光二极管驱动能力,并优化相关设备性能表现。
  • 电路
    优质
    激光二极管驱动电路是一种用于控制和供给激光二极管所需电流与电压的电子装置,广泛应用于光通信、打印、扫描等领域。 ELM185BB 激光二极管驱动器能够实现功率的稳定控制,并配备有PD反馈功能及APC功能。
  • 集成电路
    优质
    激光二极管驱动集成电路是一种专门设计用于控制和驱动激光二极管工作的半导体芯片,广泛应用于光通信、打印等行业。 激光二极管驱动芯片是一种控制激光二极管输出的集成电路。它能提供稳定的电流以确保激光器正常工作,并具备多种功能来保证光输出稳定、可靠且符合相关标准协议。 UX2222是一款支持155Mbps到2.125Gbps数据传输速率的SFF/SFP激光驱动芯片,适用于小型可插拔光纤模块。这种类型的模块广泛应用于高速通信领域。 该芯片的主要特点包括: - 支持+3.3V和+5V电源供电。 - 具备自动功率控制(APC)功能,确保平均光输出稳定不变,在温度变化或激光器寿命期内阈值电流发生变化时仍能保持恒定的输出功率。 - 配备有温度补偿调制功能,可根据需要对随温度变化而改变的消光比进行校正。 - 符合SFP多源协议(MSA)和SFF-8472发射诊断要求。 - 上升和下降时间小于150皮秒,确保高速数据传输中的信号质量不受影响。 - 适用于Fabry-Pérot、分布式反馈(DFB)以及垂直腔面发射激光器(VCSEL)等多种类型的激光器。 芯片的引脚配置与描述如下: - MODTC引脚用于调节调制电流(IMOD)的温度系数,通过在该引脚和地之间接入电阻来设定。 - VCC引脚为芯片提供+3.3V或+5V供电电压。 - INP和INN分别为非反相与反相信号输入端口。 - TX_DISABLE引脚用于控制激光器发射功能的开启/关闭,高电平或悬空时禁用输出;低电平时启用输出。 - PC_MON引脚为光电流监测输出,在外部电阻上形成与监控二极管电流成比例的电压信号。 - BC_MON引脚是偏置电流监测端口,其电流在外部电阻器上产生与偏置电流成正比的电压值。 - SHUTDOWN引脚用于关闭芯片功能,当该引脚被拉至高电平时,整个电路停止工作。 典型的应用电路图展示了如何使用UX2222激光二极管驱动芯片。它包括了必要的电阻和连接器,并说明了如何配置引脚以实现对激光器的精确控制。 在实际应用中,自动功率控制系统(APC)是关键功能之一。该反馈回路通过监控光电二极管来保持平均光输出稳定不变,确保在整个工作寿命期内提供稳定的光线输出。温度补偿机制旨在抵消随温度变化而产生的消光比差异,在不同环境条件下都能维持良好的信号质量。 激光驱动芯片需要准确地控制电流以保证激光器正常运作,并且必须防止超出安全操作范围的情况发生。此外,还应具备故障检测和保护功能,例如通过TX_FAULT输出引脚提供单点锁定机制来帮助系统识别并应对潜在问题。 设计与使用高质量的激光二极管驱动芯片对于构建高性能光通信系统至关重要,它需要与其他高速通信组件(如电信号处理单元、光模块及光纤网络设备)兼容以确保整个链路性能满足数据传输需求。
  • 优质
    蓝光激光二极管是一种能够发射蓝色波段激光的半导体器件,广泛应用于数据存储、投影显示和激光照明等领域。 蓝光二极管激光器是一种能够发射蓝色光线的半导体器件。这种技术在多个领域有着广泛的应用,包括数据存储、全彩显示以及医疗设备等。由于其高效性和稳定性,蓝光二极管激光器成为了现代科技发展中的一个重要组成部分。
  • MAX3867电路及其应用
    优质
    《MAX3867激光二极管驱动电路及其应用》一书深入探讨了激光二极管驱动技术,详细介绍MAX3867芯片的功能与使用方法,并提供了多种应用场景的实例。 ### MAX3867激光二极管驱动电路及其应用 MAX3867是一款专为高速数据传输设计的单电源激光二极管驱动器,具备2.5Gbps的高速传输速率,广泛应用于SDH(同步数字体系)SONET(同步光网络)系统、双工器以及2.5Gbps的光通信设备。该器件的核心特点是其内部集成的自动功率控制(APC)闭环电路,能够补偿温度变化和芯片老化对激光二极管输出功率的影响,从而保持稳定的输出。 ### 主要性能指标 - **电源电压**:支持从-0.5V到+7.0V的工作范围。 - **偏置电流**:可在-20mA至+150mA之间调节。 - **最大输出电流**:可达+100mA。 - **连续功耗**:在环境温度为85℃时,功率消耗为1354mW。 - **存储和工作温度范围**:存储温度从-65℃到+165℃不等;结温则从-55℃至+150℃。 - **引脚焊接温度**:可以承受短暂的高温(最高达300°C)。 ### 电气性能参数 MAX3867包含多项关键电气性能指标,如调制电流精度、偏置电流精度、输出电压摆幅及上升下降时间等。这些参数决定了其在高速通信中的表现能力。 ### 封装形式与引脚功能 该器件采用48针方形贴片封装(TQFP),每根引线都有特定的功能,包括但不限于控制输入端口、数据输入通道、输出电流调节以及APC相关控制等。 ### 基本工作原理 驱动电路由高速调制驱动部分和自动功率控制系统构成。其中的交流耦合技术能够减少瞬态电压冲击,从而保护激光二极管不受损害;而自动功率控制系统则通过监测光电二极管反馈来调节偏置电流,并确保光输出功率稳定。 ### 其他辅助功能 - **APC开环工作**:当关闭APC时,电流由外部电阻设定。 - **数据输入锁定**:利用LATCH端口控制数据同步方式。 - **使能控制**:允许开启或关闭激光二极管的输出。 - **软启动**:设置导通延迟时间以避免对设备造成损害。 - **APC失效监测**:当自动功率控制系统出现异常时,提供故障指示信号。 - **短路保护**:防止过流导致激光二极管受损。 ### 应用设计 在规划和实施基于MAX3867的光发射器设计过程中,需要考虑平均功率、熄灭率、输出光强度以及监测电流波动等因素。通过预先设定调制与偏置电流及恒定APC功率值,并结合相关曲线图进行配置。 由于其卓越的速度性能、内置自动功率控制功能和丰富的辅助特性,MAX3867已成为高速通信领域中不可或缺的关键组件之一。正确理解并应用这些特点能够帮助设计出高效且稳定的激光二极管驱动系统。
  • 泵浦Cr
    优质
    激光二极管泵浦Cr(如Cr:Forsterite)固态激光器技术,利用高效能激光二极管作为激励源,激发含铬离子的晶体产生特定波长的激光输出。此技术因其高转换效率、窄线宽及良好的频率稳定性,在精密测量和医疗领域展现出广泛应用潜力。 我们对一种由激光二极管(LD)抽运的Cr4+:YAG被动调Q Nd:YVO4全固态激光器进行了实验研究。特别关注了抽运功率、Cr4+:YAG晶体的初始透过率以及其在激光腔中的位置等因素,这些因素如何影响输出脉冲宽度和重复频率等性能指标,并对实验结果进行分析讨论,同时从理论上给出合理的解释。
  • 大电流短脉宽电路设计
    优质
    本项目专注于研发高效率的大电流短脉宽激光二极管驱动电路,旨在优化激光器性能,适用于工业加工、医疗和科研等领域。 大电流窄脉宽激光二极管驱动电路设计
  • 基于STC单机的可调功率电路设计
    优质
    本项目致力于设计一种基于STC单片机控制的激光二极管可调功率驱动电路,旨在实现对激光二极管输出功率的精确调节。该系统通过优化硬件结构和编写高效的软件算法,确保了高精度、稳定性强且响应速度快的特点,在工业检测与医疗设备等领域具有广泛的应用前景。 本段落档介绍了基于STC单片机控制激光二极管的驱动电路设计,并且可以实现对激光二极管功率的调控。
  • 检测电路资料
    优质
    本资料深入探讨了光敏二极管芯片的工作原理及其在光检测中的应用,并详细介绍了相关的电路设计与优化技巧。 光敏二极管的最简单的光检测电路如图(a)所示,该电路采用二极管输出端开路的方式,其输出电压随入射光量呈对数线性变化。
  • 高性能电源的设计与实现
    优质
    本文介绍了高性能激光二极管驱动电源的设计理念及其具体实施过程,详细探讨了其技术特点和应用前景。 二极管激光器对其驱动电源有严格的要求:输出的直流电流要高、电流稳定且低纹波系数、高功率因数等。随着激光器输出功率的增加,需要高性能的大电流稳流电源来驱动。为了确保半导体激光器正常工作,必须合理设计其驱动电源。