Advertisement

DualSuperResLearning在SemSeg中的应用:“用于语义分割的双重超分辨率学习”,CVPR 2020,http...

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文介绍了一种名为DualSuperResLearning的方法,应用于CVPR 2020会议,通过双重超分辨率学习技术显著提升图像语义分割精度。 用于语义分割的双重超分辨率学习是CVPR 2020年的一篇论文,该研究结合了超分辨率与特征相似性学习来改进传统的语义分割模型。实验中输入为256×512尺寸,输出为512x1024的分段图,并且仅使用预训练权重进行骨干网络训练而未采用前人的方法。在不同阶段和类型的平均准确度、平均IoU以及交叉熵误差方面取得了如下结果: - SSSR:93.28%,60.59%(括号内数值为另一种计算方式的结果),最佳时代1个SSSR的误差值为0.228,在第250个历元达到最优。 - SSSR + SISR:93.48%,60.96%(同样,括号内的数据代表了另外一种计算方法得出的结果),误差值降至0.224,并在第248个历元时表现最佳。 - SSSR + SISR + FA:93.34%,平均IoU为60.59%,误差值进一步减小至0.227,最优性能出现在第234个历元。 需要注意的是,报告中的均值IoU是通过交集之和除以并集来计算的(这是常用方法),而括号内的数值则是单独基于并集上的交集进行平均得到的结果。当前SSSR模块采用了一种双线性升采样技术。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • DualSuperResLearningSemSeg:“”,CVPR 2020http...
    优质
    本文介绍了一种名为DualSuperResLearning的方法,应用于CVPR 2020会议,通过双重超分辨率学习技术显著提升图像语义分割精度。 用于语义分割的双重超分辨率学习是CVPR 2020年的一篇论文,该研究结合了超分辨率与特征相似性学习来改进传统的语义分割模型。实验中输入为256×512尺寸,输出为512x1024的分段图,并且仅使用预训练权重进行骨干网络训练而未采用前人的方法。在不同阶段和类型的平均准确度、平均IoU以及交叉熵误差方面取得了如下结果: - SSSR:93.28%,60.59%(括号内数值为另一种计算方式的结果),最佳时代1个SSSR的误差值为0.228,在第250个历元达到最优。 - SSSR + SISR:93.48%,60.96%(同样,括号内的数据代表了另外一种计算方法得出的结果),误差值降至0.224,并在第248个历元时表现最佳。 - SSSR + SISR + FA:93.34%,平均IoU为60.59%,误差值进一步减小至0.227,最优性能出现在第234个历元。 需要注意的是,报告中的均值IoU是通过交集之和除以并集来计算的(这是常用方法),而括号内的数值则是单独基于并集上的交集进行平均得到的结果。当前SSSR模块采用了一种双线性升采样技术。
  • DASR: [CVPR 2021] 无监督降级表示
    优质
    本文提出了一种基于无监督降级表示学习的方法,用于图像的盲超分辨率任务,在CVPR 2021上发表。该方法能够有效提升低分辨率图像到高分辨率图像转换的质量与细节恢复能力。 DASR Pytorch实施“盲人超分辨率的无监督降级表示学习”,CVPR 2021概述要求使用Python 3.6、PyTorch版本为1.1.0,以及一些额外库如skimage、matplotlib和cv2。 准备训练数据: - 下载所需的数据集。 - 在your_data_path/DF2K/HR目录下合并来自这两个数据集的高分辨率(HR)图像以构建DF2K数据集。 开始训练: 运行./main.sh脚本来使用DF2K数据集进行模型训练。请确保在bash文件中将dir_data更新为你的实际路径。 测试: - 准备测试数据:下载例如Set5、Set14等基准测试集合,并在your_data_path/benchmark目录下放置高分辨率(HR)和低分辨率(LR)图像。 - 开始测试:运行./test.sh脚本以使用基准数据集进行模型的评估。请确保将dir_data更新为你的实际路径。 以上是关于DASR Pytorch实施盲人超分辨率无监督降级表示学习的基本步骤,按照上述操作可以顺利完成训练和测试过程。
  • 深度图像综述
    优质
    本综述探讨了深度学习技术在提升图像分辨率方面的最新进展和挑战,特别聚焦于算法、模型架构及实际应用场景。 图像超分辨率重建(super-resolution, SR)是指从低分辨率的观测图像还原出高分辨率图像的技术,在目标检测、医学成像以及卫星遥感等领域具有重要应用价值。近年来,随着深度学习技术的发展,基于深度学习的SR方法取得了显著的进步。为了全面了解当前基于深度学习的超分辨率重建方法的研究进展和热点问题,本段落对一些最新的相关研究进行了梳理,并将这些方法分为有监督和无监督两大类进行详细阐述。此外,在公开的数据集上对比分析了主流方法的表现情况。最后,总结了目前基于深度学习的图像超分辨率重建技术的发展状况,并对其未来的研究趋势做出了展望。
  • PyTorch-SemSeg:基PyTorch框架
    优质
    简介:PyTorch-SemSeg是一款专为语义分割任务设计的开源框架,采用流行的深度学习库PyTorch构建,提供丰富的模型、数据集和训练工具。 PyTorch-Semseg 是一个在 PyTorch 中实现语义分割算法的项目。该存储库的目标是镜像流行的语义分段架构。 实施网络包括: - 支持加载不包含 Caffe 依赖性的预训练模型。 - 带有可选批量归一化和预训练模型的选项。 - 模型 A 和 B,其中包括所有 FCN32s、FCN16s 和 FCN8s 流的变体。 - Net 网络,带有可选反卷积和批处理标准化功能。 - 使用多个 ResNet 后端的网络实现。 即将增加的功能: 实现了 DataLoader 功能。 要求: - pytorch >= 0.4.0 - torchvision == 0.2.0 - numpy - tqdm - tensorboard 安装方法: 使用命令 `pip install -r requirements.txt` 安装依赖项。
  • U-Net遥感图像研究.pdf
    优质
    本文探讨了U-Net模型在处理高分辨率遥感图像时进行语义分割的应用效果,并分析其优势与挑战。 图像分割是遥感解译的关键环节之一。高分辨率的遥感图像包含复杂的地物目标信息,传统的分割方法在处理这些复杂的信息上面临诸多挑战,而基于深度卷积神经网络的方法则取得了显著进展。 为此,我们提出了一种改进版U-Net架构的深度卷积神经网络模型来解决高分辨遥感图像中的像素级语义分割问题。通过对原始数据集进行扩充,并针对每类地物目标训练二分类器,最终将各子图预测结果整合为完整的语义分割图像。 此外,我们采用集成学习策略进一步提升了模型的精度,在某个特定的数据集中获得了94%的训练准确率和90%的测试准确率。实验表明该方法不仅能够提供高精确度的结果,并且具备良好的泛化能力,适用于实际工程应用中。
  • Transformer
    优质
    本研究探讨了Transformer模型在图像语义分割任务中的应用潜力,通过对比实验分析其相对于传统CNN方法的优势与局限。 整个网络流程如下:首先经过两层卷积操作,然后将生成的特征图分割成四份,并分别通过四个并行的Transformer模块(头部数量可以自定义设置),之后再将上述结果进行拼接(concatenate),接着再经历一个额外的Transformer处理阶段。最后是多层级解码器部分。 主要调试文件包括main.py、transformer.py和builders.py,其余代码仅作为依赖包使用。 - main.py:这是运行程序的主要入口点,并包含了路径设置、数据集划分以及测试与评估指标的相关参数配置。 - transformer.py: 包含了所有网络模块(类)的定义。 - builders.py: 用于构建transformer文件中定义的各种模块,训练过程中主要依赖于VitBuilder这个类。 此外,在进行实验前还需要对输入的数据做一定的预处理: 1. 图片尺寸调整:将图片大小统一转换为256*256像素; 2. 格式转换:确保所有图像文件均为png格式。若原图为jpg或其他格式,可以通过cmd命令行工具执行ren *.jpg *.png指令来完成批量的格式更替操作。 请根据上述步骤进行相关配置和调试工作以顺利开展实验研究。
  • 深度遥感影像
    优质
    本研究利用深度学习技术,针对高分辨率遥感影像进行高效准确的语义分割,旨在提升图像解译精度与自动化水平。 高分辨率遥感影像包含大量地理信息。然而,基于传统神经网络的语义分割模型难以从这些图像中的小物体提取高层次特征,导致较高的分割错误率。本段落提出了一种改进DeconvNet网络的方法,通过编码与解码结构特征连接来提升性能。在编码阶段,该方法记录池化操作的位置并在上采样过程中加以利用,有助于保留空间信息;而在解码阶段,则采用对应层的特征融合以实现更有效的特征提取。训练模型时使用预训练模型可以有效扩充数据集,从而避免过拟合问题的发生。 实验结果显示,在优化器、学习率和损失函数适当调整的基础上,并通过扩增的数据进行训练后,该方法在验证遥感影像上的分割精确度达到了约95%,明显优于DeconvNet和UNet网络的表现。
  • CVPR2013字典图像代码
    优质
    本项目为CVPR 2013论文《Dictionary Learning for Image Super-Resolution》提供的实现代码,用于通过字典学习技术提升低分辨率图像至高分辨率。 CVPR2013--BPJDL--Beta Process Joint Dictionary Learning for Coupled Feature Spaces with Application to Single Image Super-Resolution 这篇论文提出了一个基于贝塔过程的联合字典学习方法,用于处理耦合特征空间,并将其应用于单图像超分辨率问题。
  • SRCNN.zip_SRCNN_matlab代码__建_
    优质
    本资源包包含用于图像超分辨率重建的SRCNN模型Matlab实现代码。适用于研究与学习高分辨率图像生成技术。 SRCNN超分辨率重构的Matlab应用。
  • 深度图像(论文集合)
    优质
    本论文集聚焦于深度学习技术在提升图像分辨率领域的最新进展和挑战,涵盖多种算法模型及其实际应用场景。 这篇博文的paper集合包含了从网上下载的相关论文原文。虽然博文中提供了链接供读者参考,但为了方便大家阅读和使用,我将这些papers打包在此一并提供给大家。