Advertisement

电感选型规范在电子元器件选型中的应用.pdf

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本文档深入探讨了电感选型规范及其在现代电子设备中不可或缺的作用,并详细介绍了如何根据实际需求选择合适的电感器。文档结合实例,全面解析了电感器的类型、参数及性能指标等关键要素,旨在帮助工程师和设计师掌握高效准确的元器件选型技巧,优化电路设计与系统性能。 电子元器件选型-电感选型规范 一、 选型原则 1.0 总则 1.0.1 电感器在MRP II中从3个分类(编号为1001~1003)调整为7类(编号为1001~1007),具体如下: - 高频插装电感:固定插装型,类别编号为1001 - 可变电感器:包含可调值的元件,形式可以是贴片或插件类型,类别编号为1002 - 片状电感器:固定式表面安装器件,类别编号为1003 - 共模滤波电感器:包括插装和表贴两种形态,类别编号为1004 - 空心线圈:形式可以是插件或表贴类型,类别编号为1005 - 工频功率电感器:固定式安装器件,类别编号为1006 - EMI磁珠:包括插装和表面贴两种形态的元件,类别编号为1007 1.0.2 在MRP II中,标记M的产品仅限于公司在电气方面的使用;而用T标记的产品则仅供话机内部应用。公司技术产品不采用上述任何标识类型。 1.0.3 电感器归一化方向: (1) 对于类别编号为1001的小电流项目插装固定电感,将逐步淘汰并以片状贴装式电感替换;保留功率型元件。 (2) 类别编号为1003的片状电感器件逐渐向小型化及叠层结构发展。优选库也将根据这一趋势进行动态调整,这类元器件是小电流应用中的首选通用件。 (3) 可变电感器(类别编号为1002)数量较少,仅提供当前推荐清单。 (4) 功率型共模滤波电感器优先采用插装式;信号类型则更倾向于表面贴片元件。 (5) 空心线圈主要应用于微调及中低频项目,高频应用将逐步淘汰。 (6) 工频功率电感(类别编号为1006)仅适用于工频范围,并且目前只有MBC在使用这种类型的产品。 (7) 尽可能采用网络上已有的器件;严格控制新元件的引入数量。 (8) 无论哪种类型的电感器,都不可选用极限规格。 1.1 插装固定差模电感 a. 推荐制造商:公司技术领域推荐金骏、TDK和海光;电气应用则建议使用金骏、海光、晶石及磁通的产品。 b. 标称电感值应采用E6系列,具体数值包括1.0、1.5、2.2、3.3、4.7及6.8微亨或更高倍数的这些数字。优选精度为±20%,若需要更高的精确度,则可选择±10%的产品。 c. 额定上限工作温度推荐使用B级材料,其耐温等级应达到130℃。 d. 抗电强度:要求线圈与磁芯之间施加的50Hz、1500V电压下持续一分钟内漏电流不大于1mA且无击穿或飞弧现象发生。 e. 推荐使用工字型结构,色环式元件将逐步被淘汰。对于功率级别的电感器,尽管PULSE、COILCRAFT和TDK有表面贴装产品供应,但考虑到成本因素目前仍以插件为首选方案。 f. 对于非标准磁芯材料,请尽可能选用国产器件。 g. 公司电气自设计或委托公司技术部门用于电源的电感器,在特定情况下可不受上述标称值限制。具体设计方案需根据实际情况确定。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • .pdf
    优质
    本文档深入探讨了电感选型规范及其在现代电子设备中不可或缺的作用,并详细介绍了如何根据实际需求选择合适的电感器。文档结合实例,全面解析了电感器的类型、参数及性能指标等关键要素,旨在帮助工程师和设计师掌握高效准确的元器件选型技巧,优化电路设计与系统性能。 电子元器件选型-电感选型规范 一、 选型原则 1.0 总则 1.0.1 电感器在MRP II中从3个分类(编号为1001~1003)调整为7类(编号为1001~1007),具体如下: - 高频插装电感:固定插装型,类别编号为1001 - 可变电感器:包含可调值的元件,形式可以是贴片或插件类型,类别编号为1002 - 片状电感器:固定式表面安装器件,类别编号为1003 - 共模滤波电感器:包括插装和表贴两种形态,类别编号为1004 - 空心线圈:形式可以是插件或表贴类型,类别编号为1005 - 工频功率电感器:固定式安装器件,类别编号为1006 - EMI磁珠:包括插装和表面贴两种形态的元件,类别编号为1007 1.0.2 在MRP II中,标记M的产品仅限于公司在电气方面的使用;而用T标记的产品则仅供话机内部应用。公司技术产品不采用上述任何标识类型。 1.0.3 电感器归一化方向: (1) 对于类别编号为1001的小电流项目插装固定电感,将逐步淘汰并以片状贴装式电感替换;保留功率型元件。 (2) 类别编号为1003的片状电感器件逐渐向小型化及叠层结构发展。优选库也将根据这一趋势进行动态调整,这类元器件是小电流应用中的首选通用件。 (3) 可变电感器(类别编号为1002)数量较少,仅提供当前推荐清单。 (4) 功率型共模滤波电感器优先采用插装式;信号类型则更倾向于表面贴片元件。 (5) 空心线圈主要应用于微调及中低频项目,高频应用将逐步淘汰。 (6) 工频功率电感(类别编号为1006)仅适用于工频范围,并且目前只有MBC在使用这种类型的产品。 (7) 尽可能采用网络上已有的器件;严格控制新元件的引入数量。 (8) 无论哪种类型的电感器,都不可选用极限规格。 1.1 插装固定差模电感 a. 推荐制造商:公司技术领域推荐金骏、TDK和海光;电气应用则建议使用金骏、海光、晶石及磁通的产品。 b. 标称电感值应采用E6系列,具体数值包括1.0、1.5、2.2、3.3、4.7及6.8微亨或更高倍数的这些数字。优选精度为±20%,若需要更高的精确度,则可选择±10%的产品。 c. 额定上限工作温度推荐使用B级材料,其耐温等级应达到130℃。 d. 抗电强度:要求线圈与磁芯之间施加的50Hz、1500V电压下持续一分钟内漏电流不大于1mA且无击穿或飞弧现象发生。 e. 推荐使用工字型结构,色环式元件将逐步被淘汰。对于功率级别的电感器,尽管PULSE、COILCRAFT和TDK有表面贴装产品供应,但考虑到成本因素目前仍以插件为首选方案。 f. 对于非标准磁芯材料,请尽可能选用国产器件。 g. 公司电气自设计或委托公司技术部门用于电源的电感器,在特定情况下可不受上述标称值限制。具体设计方案需根据实际情况确定。
  • 设计原则和
    优质
    本课程介绍电子元件的设计与选型原则及行业规范,涵盖电阻、电容等基础元器件的应用准则和技术要求,指导工程师科学合理地选择合适的电子元件。 01.二极管选型规范.doc 02.三极管和MOSFET选型规范.doc 03.光耦选型规范.doc 04.电阻选型规范.doc 05.器件降额规范.doc 06.电容选型规范.doc 07.元器件可靠性降额规范V1.0.doc
  • PCB设计.pdf
    优质
    本手册详细介绍了在PCB设计过程中如何进行元件选型的标准与规范,涵盖电气性能、机械尺寸及热学特性等多方面内容。 正确有效地选择和使用电子元器件是提高电子产品可靠性的关键步骤。电子元器件的可靠性分为固有可靠性和使用可靠性,其中固有可靠性主要由设计和制造过程保证,这是元器件生产厂的责任。 然而,根据国内外失效分析资料,大约一半的元器件失效并非源于其本身的固有可靠性不足,而是由于使用者在选择或应用过程中出现错误。因此为了确保电子产品的可靠性,必须严格控制电子元器件的选择与使用方法。
  • 详尽指南之二:
    优质
    本指南深入探讨了各类电容器的特点与应用场景,旨在为工程师和爱好者提供全面的选择指导,助力优化电路设计。 超详细的电子元器件选型指南之二:电容器 本篇文章将详细介绍如何选择合适的电容器。我们将探讨不同类型的电容器以及它们的应用场景,帮助读者根据具体需求挑选最合适的元件。 首先介绍几种常见的电容类型,包括陶瓷电容、电解电容和薄膜电容等,并分析各自的优缺点及适用范围。接下来会讨论影响选型的因素如工作电压、耐温性能等技术参数的重要性及其对电路设计的影响。 然后给出实际应用案例来说明如何根据具体需求选择合适的型号;最后提供一些实用建议帮助读者在众多选项中做出明智决策。 希望本段落能够为从事电子产品研发工作的工程师们带来启发和参考价值。
  • Murata片状表.pdf
    优质
    本PDF文档提供了Murata公司各类片状电感器的详细选型表格,涵盖不同型号、规格及应用场景,便于工程师和设计师快速准确地选择合适的电感元件。 片状电感器是电子设备中的重要元件之一,在电源电路和高频电路等领域发挥着关键作用。作为全球知名的电子元器件制造商,村田制作所提供多种类型的片状电感器以适应不同的应用需求。 本段落将探讨三种主要的片状电感器结构:绕线型、叠层型以及薄膜型。 1. 绕线型电感器通过在陶瓷基板上缠绕金属线形成。这种设计使得它通常具有较高的电感值和优良的频率特性,适用于需要大电感值且低损耗的应用场景。 2. 叠层型电感器由多层导体材料与绝缘物质交替堆叠,并经过高温烧结工艺制成。这一结构赋予其高密度、小体积以及良好的高频性能,在高频率电路中表现出色。 3. 薄膜型电感器利用薄膜技术在基板上沉积金属层以形成电感元件,因此尺寸非常小巧且具有宽广的频率响应范围,适用于要求微小尺寸和优异高频特性的设计。 选择片状电感器时需注意以下几点: 1. 工作频率:根据电路的工作条件挑选适合的类型。例如,在高频应用中可能更倾向于使用薄膜型或叠层型产品。 2. 电感值:依据具体的设计需求确定适当的数值,这将直接影响到滤波和振荡的效果。 3. 温度稳定性:选择具有良好温度稳定性的元件至关重要,尤其是在极端环境下工作的设备更为关键。 4. 耐电流能力:确保所选器件能够承受电路中的最大工作电流以避免过热或损坏的风险。 5. 尺寸与封装形式:考虑到印刷线路板的空间限制和布局要求,挑选合适尺寸及外形的电感器。 村田制作所在全球范围内设有多个销售和服务机构,包括但不限于中国总部及其下属区域分公司等。通过这些渠道可以获取详细的产品信息、选型指南以及技术支持服务,帮助用户在实际应用中做出正确的选择。 村田提供的片状电感器涵盖了广泛的种类和规格,能够满足各种电子信息及高频电子线路的需求。了解不同类型的电感器特点与应用场景,并结合电路设计的具体要求进行合理挑选是至关重要的步骤。
  • 择和
    优质
    《电子元件的选择和应用》是一本全面介绍如何挑选合适的电子组件以及它们在电路设计中的实际运用的技术指南。 ### 电子元器件的选择与应用 在现代电子技术领域中,电子元器件是构成各种电子产品不可或缺的基本组成部分。正确选择和合理应用电子元器件对于保证产品的性能、可靠性和成本控制至关重要。本段落将围绕“电子元器件的选择与应用”这一主题,详细介绍相关的核心知识点。 #### 一、电子元器件概述 电子元器件是指在电路中起特定作用的基本单元,包括但不限于电阻器、电容器、电感器、二极管、晶体管等。这些元件根据其功能特性可以分为两大类:无源元件和有源元件。 1. **无源元件**:不具备放大或开关能力,只能完成阻抗变换、滤波等功能,如电阻、电容、电感。 2. **有源元件**:具有放大、开关等主动功能,如晶体管、集成电路等。 #### 二、电子元器件的选择原则 1. **参数匹配**:根据电路设计需求,选择符合电压、电流和功率要求的元器件。 2. **可靠性考虑**:选择具有良好稳定性和可靠性的品牌及型号。 3. **成本效益比**:综合考虑性能与价格之间的平衡。 4. **环境适应性**:考虑到工作环境(温度、湿度等)对元器件的影响。 5. **可获取性**:优先选用市场上容易购买到的产品。 #### 三、典型电子元器件介绍 1. **电阻器** - **定义**:用于限制电流或分压的基本元件。 - **分类**:固定电阻器和可调电阻器。 - **应用**:限流、分压、滤波等。 2. **电容器** - **定义**:存储电荷的元件。 - **分类**:电解电容、陶瓷电容、薄膜电容等。 - **应用**:耦合、旁路和滤波等。 3. **电感器** - **定义**:储存磁场能量的元件。 - **分类**:空心线圈和磁芯线圈。 - **应用**:滤波和振荡等。 4. **二极管** - **定义**:具有单向导电性的半导体器件。 - **分类**:整流二极管、稳压二极管和发光二极管等。 - **应用**:整流、稳压及指示等。 5. **晶体管** - **定义**:具有放大或开关作用的半导体器件。 - **分类**:双极型晶体管(BJT)和场效应晶体管(FET)。 - **应用**:信号放大与电路切换。 #### 四、电子元器件的应用案例分析 1. **电源电路设计** - 采用整流二极管进行交流到直流的转换。 - 使用滤波电容去除直流电压中的纹波。 - 应用稳压二极管或稳压IC保证输出电压稳定。 2. **信号处理电路** - 通过电阻实现信号分压或匹配。 - 利用电容进行高频信号耦合和旁路。 - 使用晶体管放大或切换信号。 3. **振荡电路设计** - 结合电感与电容构建LC振荡电路。 - 采用晶体管调节振荡频率。 - 应用反馈网络调整振荡器的工作状态。 #### 五、结语 通过对电子元器件的选择和应用进行深入探讨,我们可以了解到,在实际产品开发过程中,合理选择合适的电子元器件并结合具体应用场景进行优化设计对于提升产品质量和降低成本具有重要意义。未来随着新材料与新工艺的发展,电子元器件将朝着更小体积、更高性能及更低功耗的方向发展,为电子产品的创新带来更多可能。
  • 数字听诊指南
    优质
    《数字听诊器与电子元件选型指南》是一本专注于介绍如何选择和使用适合数字听诊器及其他医疗设备电子组件的实用手册。书中详细解析了各种电子元件的特点、应用及最佳实践,旨在帮助工程师和技术人员优化设计,确保医疗设备性能卓越且可靠。 数字听诊器是一种利用现代数字技术来放大并处理声音信号的医疗设备,是对传统声学听诊器的一次重大升级。尽管传统的声学听诊器有着超过两百年的历史,但随着科技的进步,数字听诊器为医学诊断带来了新的可能。 在保持了经典外观和使用体验的同时,数字听诊器提升了检测声音信号的能力,并且对于医疗诊断来说至关重要。它通常包含录音与回放功能,使医生能够记录并分析声音样本。一些高端型号还能将音频数据转化为图像显示于计算机或其它显示屏上,从而显著增强了医师的诊断能力。 在技术选择方面,数字听诊器的关键组件包括声传感器、模数转换器(ADC)、编解码器、微控制器单元(MCU)或者数字信号处理器(DSP),以及数模转换器(DAC)。其中,声传感器将声音转化为模拟电压信号,在整个系统中处于核心地位。为了保持传统听诊器的操作体验,这些设备需要具备高灵敏度,并能捕捉到20Hz至400Hz范围内的心脏音及100Hz至1200Hz范围内的肺部音。 为减少环境噪音对诊断的影响,一些数字听诊器配备了降噪功能。这通常通过额外的麦克风记录背景噪声并使用数字信号处理技术来消除这些声音干扰实现。此过程需要两个音频ADC分别用于处理目标声音和环境噪音。 转换成数字信号后,信息会经过MCU或DSP进行进一步处理,包括去除不相关的频率范围内的信号以及限制心脏与肺部音的带宽。之后再通过DAC或者编解码器将数据还原为模拟形式,并由扬声器放大器调整输出至听筒中。 为了保证声音传递到医生耳朵时的质量和清晰度,可以选择单声道扬声器搭配双管设计或在每个耳机端安装独立的双声道设备。选择符合心脏及肺部音频率范围特性的组件对于确保最佳性能至关重要。 数字听诊器的设计还注重便携性和低功耗的需求,在不牺牲功能的前提下满足临床环境中的实际需要。此外,利用DSP算法来过滤特定频段外的声音信号也是设计过程中的一个重要环节。不同制造商可能有不同的标准设定,因此在开发时应根据具体需求选择合适的处理方案。 综上所述,数字听诊器的设计与选型涉及了多种电子元件和技术的综合运用,这些技术的选择和配置直接影响到设备性能及诊断准确性。同时也要考虑到产品的便携性、功耗以及用户体验等因素。随着医疗科技的发展进步,未来这一领域的应用范围将会越来越广泛。
  • 择与检测.pdf
    优质
    《电子元器件的选择与检测》是一本详细讲解如何挑选和验证电子元件品质的实用指南,涵盖电阻、电容等常用组件,适合工程师及爱好者参考学习。 电子元器件的选用解释包括电阻、电容、电感、二极管和三极管。这些元件在电路设计中有各自独特的功能与作用。例如,电阻用于限制电流或分压;电容则可以储存电荷,在滤波及耦合等应用中发挥重要作用;而电感则是用来存储磁场能量,并且能够阻止交流信号通过的元件之一。二极管具有单向导通特性,常被应用于整流电路以及保护电路之中。三极管作为一种电流控制器件,则广泛用于放大和开关功能。 以上就是关于电子元器件选择的一些基本介绍与说明,希望能够帮助到大家更好地理解这些基础组件的作用及应用场合。
  • 反激变换.pdf
    优质
    本PDF文档深入探讨了反激变换器中关键元器件的选择与优化策略,旨在帮助工程师们提高电源设计效率和可靠性。 反激变换器中元器件的选型涉及多个方面,包括变压器的设计、开关管的选择以及二极管和其他辅助元件的挑选。这些选择直接影响到电路的工作效率、稳定性及成本效益。因此,在进行设计时需要综合考虑各种因素以达到最佳性能和可靠性。
  • DCDC转换指南
    优质
    本指南深入解析了在设计和选择DC-DC转换器中所需电感的关键因素,涵盖技术规范、性能参数及应用案例,旨在帮助工程师优化电路设计。 DCDC电路的电感选型参考对于开发人员和自学者来说都是一个不错的参考资料,它简洁明了地阐述了在设计与选择DCDC电感方面的相关内容,具有很高的实用性。