Advertisement

低功耗采样电路的分析与设计研究。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
通过对两种开关电容采样保持电路的深入分析与对比,我们设计出了一种全新的低功耗采样保持电路方案。该电路巧妙地运用了电容翻转式结构、增益增强技术以及栅压自举开关技术,从而有效地降低了运放的功耗并显著减少了电路的非线性失真。具体而言,该电路的设计基于SMIC 0.18μm CMOS 工艺,经过详细的仿真验证,结果显示其SNDR达到了71dB,并且仅消耗了3.8mW的功率,这使其非常适用于应用于10位、50Ms/s流水线ADC系统中。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 保持
    优质
    本研究聚焦于采样保持电路的低功耗技术分析与创新设计方案探索,旨在提高电路效率并减少能源消耗。 通过对两种开关电容采样保持电路的分析与比较,设计了一种低功耗采样保持电路。该电路采用电容翻转式结构、增益增强技术和栅压自举开关技术来减少运放的功耗并降低非线性失真。使用SMIC 0.18μm CMOS工艺进行设计后,仿真结果显示其SNDR为71dB,功耗仅为3.8mW,适用于10位50Ms/s流水线ADC的应用中。
  • GHz VCO.pdf
    优质
    本文档探讨了低功耗GHz级压控振荡器(VCO)的设计方法和技术细节,旨在提高无线通信设备中的能效和性能。 李月梅和李哲英设计了一种用途广泛的VCO电路结构。该VCO电路采用负阻差分振荡器的基本架构,并主要进行了功耗分析,同时也对相位噪声进行了研究。
  • 集成估算综述
    优质
    本文综述了集成电路在不同阶段的功耗估算方法,并探讨了实现低功耗设计的关键技术及未来发展方向。 集成电路的功耗估计及低能耗设计是电子工程领域中的关键环节。随着技术的发展与电路微型化需求的增长,对芯片效率和效能的要求日益严格。无论是电池驱动设备还是高性能有线系统,降低能量消耗都是至关重要的目标。 在嵌入式系统的应用中,处理器虽可能仅占整体功耗的一小部分,但其设计选择会直接影响到整个系统的性能、能耗及电磁干扰(EMI)表现。集成电路的总功率损耗可以分为静态和动态两大类:前者是指电路处于静止状态时发生的能量消耗;后者则是在信号变换过程中产生的。 对于降低漏电流大小而言,优化工艺处理流程以及减小供电电压是有效策略之一,比如目前很多器件采用3.3V而非传统的5V作为工作电压。在长时间运行的系统中,动态功耗通常占据主要部分,并且可以通过公式P=CFU进行估算(其中C代表开关电容、F为频率而U则是电源电压)。 集成电路的整体能耗可以由以下等式表示:P=Pc+Pf+Ps;这里,P是总功率消耗量,C指系统节点的电容量,V即供电电压值,f为工作时钟速率,S用来衡量状态切换频率。具体来说: - Pc代表由于电路状态改变产生的功耗损失; - Pf表示短路事件导致的能量浪费; - Ps则是由漏电流引起的静态损耗。 为了减少集成电路中的动态和静态能耗,可以通过降低节点电容、供电电压及工作频率来实现;此外,在不影响计算精度的前提下调整阈值水平也能有效减小静止状态下的功耗。通过优化这些参数,不仅能够提升芯片性能与可靠性,还能延长电池寿命并降低成本。
  • 基于LTC3388-1能量
    优质
    本简介介绍了一种基于LTC3388-1芯片设计的低功耗能量采集电路,旨在高效地收集和管理环境中的微小能量。该电路适用于无线传感器网络、远程监测等应用场景,具有高集成度、宽输入电压范围及多种输出模式等特点,有效延长了设备的工作寿命并降低了维护成本。 在全球范围内,我们周围存在着丰富的环境能源。传统的能量收集方法主要应用于太阳能板和风力发电机等领域。然而,现在还出现了许多新型工具可以从各种环境中获取电能。这些新方法的重点不在于提高电路的能量转换效率,而是更关注于能够为电路提供“平均收集到的”总能量量。
  • STM32L476原理图
    优质
    本项目专注于STM32L476微控制器的低功耗系统设计,涵盖详细原理图及PCB布局技巧,旨在优化硬件配置以实现高效能下的最低能耗。 低功耗STM32L476的原理图和电路板设计已经完成,并且测试非常成功;其中包括SPI flash W25Q128 和IS61LV25616,以及串口测试也已完成。原理图和电路板图已准备好。
  • 门控时钟策略
    优质
    本研究聚焦于低功耗门控时钟技术,探索并提出有效的电路设计策略,旨在减少电子设备能耗,提升能效比。 在当今的电子与微电子产品开发领域里,集成电路(IC)的功耗问题变得越来越关键,特别是在移动设备及大规模集成设计方面。尽管随着工艺节点的进步,芯片能够达到更高的密度以及性能水平,但同时伴随着的是能耗增加的问题。因此,在市场竞争中采取低功耗策略成为了一个核心焦点。 本段落提出了一种基于门控时钟技术的电路设计方案来解决这一问题,主要针对集成电路中的寄存器组部分。通过应用高阈值单元库和特定的门控机制,可以有效地控制与管理芯片的整体能耗。 门控时钟技术是降低IC功耗的一种常用方法。当一个寄存器组内的使能信号(EN)为低电平时,该技术能够关闭其时钟输入通道,避免因不必要的时钟翻转而导致的能量浪费。具体来说,在EN处于低状态的情况下,即使有外部的时钟信号变化也不会影响到内部电路的工作状态;而当EN变为高电平后,则允许正常的时钟驱动操作进行。 门控单元通常由一个锁存器和逻辑门(如与门)组成来实现这一功能。虽然也可以使用非锁存结构设计,但这可能会引入额外的毛刺问题。通过这种方式不仅可以减少寄存器组内部由于多余翻转造成的功耗浪费,还可以降低所需的门控元件数量以节省面积。 为了实施这项技术,在综合阶段需要插入相应的控制单元,并在布局布线步骤中进一步优化其位置和连接关系。例如可以通过设置特定的脚本指令(如set_clock_gating_style)来实现物理层面的实际应用。更为先进的多级门控时钟方法则通过分层管理机制减少了总的能耗,同时确保了电路的功能性。 在这种分级结构下,一个控制单元可以调控其他多个子单元的工作状态。设计过程中需要确定每个层级的扇出、位宽和深度等参数以达到最佳效果。这些因素决定了系统的负载能力以及响应时间要求,并且要根据实际时序限制进行调整优化。 除此之外,还可以采用层次化门控技术进一步减小功耗。这种方法通过在不同层面上实施门控策略来更有效地控制寄存器组的操作流程。 此外,在实践中可以结合使用高阈值单元库以减少静态能耗并提高可靠性而无需额外增加功率消耗。这类预定义的集成元件已经包含了详细的时序信息,所以在添加特定的门控机制时不需要重新设定输入端口的时间参数。 通过上述措施,利用门控时钟技术能够有效降低整个集成电路设计中的功耗水平。特别是对于系统级芯片(SoC)来说,在其性能表现中对能耗进行管理显得尤为重要。随着市场对电子设备需求的增长趋势,如何实现合理的能耗控制与优化成为了决定产品竞争力的关键因素之一。 在制定具体的低功耗策略时,设计师必须全面考虑工艺节点、目标性能指标、能效要求以及时间约束等多个方面才能开发出既满足功能又符合节能标准的集成电路。
  • 门控时钟策略
    优质
    本研究聚焦于低功耗门控与时钟电路的设计优化策略,旨在探索减少集成电路能量消耗的有效方法,提升电子设备能效。 本段落详细介绍了一种基于门控时钟的低功耗电路设计方案,并提出了解决由该技术引发的时钟偏移问题的方法,对VLSI深亚微米低功耗电路物理层的设计具有实际应用价值。 一、门控时钟技术的基本原理 通过在寄存器组的时钟输入端插入控制单元来实现门控时钟技术。这可以避免不必要的时钟翻转,从而降低能耗。这种技术可通过Latch结构或非Latch结构实施,而基于Latch的方案能有效防止毛刺现象。 二、应用范围 该技术适用于各种低功耗电路设计中,包括SoC和深亚微米低功耗电路等场景。在这些环境中,门控时钟能够减少因时钟网络翻转导致的能量消耗,并提高系统的能源效率。 三、物理实现方法 可以采用RTL级的方法来实施门控时钟技术,在布局布线阶段进行优化处理以进一步降低能耗和简化结构设计。 四、RTL级别的实现方式 在这一级别上,只需通过修改综合脚本中的控制项即可完成门控时钟的设置。正确配置这些参数对于确保最佳性能至关重要,但目前尚缺乏一套完善的指导方案来说明如何达到最优效果。 五、关键参数的选择策略 合理选择fanout大小、位宽和级数等参数对优化功耗及保持良好的时间特性都是至关重要的。在确定具体数值时需要综合考虑设计需求以及单元库的特性和合成阶段的时间限制条件。 六、未来发展展望 随着市场对于低能耗芯片解决方案的需求不断增长,门控时钟技术将在该领域内扮演越来越核心的角色。同时还可以与其他节能措施相结合使用(如多级和层次化控制),以进一步降低功耗水平。
  • 一种微弱能量
    优质
    本设计提出了一种高效的低能耗微弱能量采集电路,旨在有效收集环境中的微弱能量并转换为可利用电能,适用于物联网设备等场景。 为了高效地收集环境中的微弱能量,设计了一种低功耗的微弱能量收集电路。该电路采用LTC3588-1电源管理芯片为核心的电压变换电路、LTC4071充电控制芯片为核心的充电控制电路以及TPL5100为核心的定时器电路搭建而成。这种设计能够将收集到的微弱能量转换为电能,并将其存储在锂电池中或直接提供给负载供电。实验结果表明,所设计的低功耗微弱能量收集电路成功实现了对微弱能量的有效收集,其自身平均功耗仅为182μW。这验证了利用该技术向无线传感器网络节点供能的可能性。由于具有低功耗和低成本的特点,这种电路具备广泛的应用前景。
  • 关于MTR5012B125K射频应用-方案
    优质
    本文介绍了MTR5012B在125K频率下的低功耗射频电路设计方案及其实际应用,详细探讨了其技术特点和优势。 MTR5012b射频芯片概述:MTR5012b是一款标准的125K非接触卡读写器芯片,内置独立的接收放大和数字解调电路、时钟电路及复位电路。该芯片能够读取ID card的UID,并且具有多种可配置的数字接口,适用于需要读取UID的各种场合。此外,它还拥有非常低的待机功耗(0.5uA@5V)。 特性包括: - 低功耗模式:0.5uA@5V - 内置收发定时器 - 内置接收放大电路,外围器件少 - 外部时钟4MHz,可采用晶体振荡器 - 支持UART和维根主动输出,并支持被动读取UID功能 - 兼容3.3V/5V电压环境 - 采用TSSOP20封装,占用面积小 该款产品应用广泛,在门禁、考勤机、电子锁及桑拿锁等领域都有广阔的应用空间。
  • UPF
    优质
    低功耗UPF(Unified Power Format)设计是一种用于集成电路中的电源管理技术,通过优化芯片内部模块的工作状态来降低能耗,提高能效比。此方法在保证性能的同时显著减少能量消耗,延长设备运行时间,并有助于减小电子产品的环境影响。 UPF低功耗设计是利用统一电源格式(Unified Power Format, UPF)进行的低能耗电路设计方法和技术。作为IEEE1801标准的一部分,UPF旨在减少ASIC设计中的电力消耗,成为继速度与面积之后IC设计中不可或缺的一个维度。 目前存在多种降低芯片功耗的方法,如减小工作电压、控制漏电流、调整运行频率以及优化电容使用等。采用基于IEEE1801的UPF进行低能耗电路的设计流程包括描述低能耗意图,并借助Synopsys公司的相关解决方案完成设计实现与验证等工作。 利用UPF实施低功耗设计的优势在于可以有效降低芯片的整体电力消耗,减少产生的热量并提高设备运行时长和可靠性。这使得它特别适用于对电池寿命有高要求的手持电子装置市场的需求。 一个完整的UPF低能耗电路设计流程涵盖描述意图、实际构建、验证及制造测试等环节,在这些阶段中都需要运用到UPF规范与Synopsys的解决方案来完成相应的任务。 这种技术广泛应用于移动设备,服务器环境,数据中心以及智能家居等领域。通过应用该方法能够满足上述场景对高效能电池管理的需求,并提升产品性能和用户体验度。 在实践中实施UPF低能耗设计时会遇到一些挑战如如何准确表达节能目标、实现具体的节约措施及确保验证环节的准确性等问题。同时还需要权衡设计方案复杂性与制造可靠性的关系,以达到最佳效果。 总的来说,UPF低功耗技术是IC领域的一项关键技能,其主要功能在于减少芯片能耗并提升设备的工作效率和稳定性。设计过程严格遵循IEEE1801标准,并通过Synopsys的解决方案来完成整个流程中的各个步骤。