Advertisement

U-Boot的详细移植步骤。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
摘要:嵌入式系统通常缺乏一个标准化的启动加载程序(bootloader),而u-boot则是一款功能十分强大的启动加载程序开发软件,尽管如此,它也相对而言较为复杂。本文档对u-boot的启动机制进行了深入阐述,并提供了详细的移植方法和具体步骤,尤其是在S3C44B0开发板上的应用。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • U-Boot 内核与裁剪
    优质
    本文详细介绍如何进行U-Boot内核的移植和裁剪过程,包括准备工作、配置选项调整、编译烧录等具体步骤。适合嵌入式系统开发者参考学习。 本段落详细介绍了U-Boot内核移植的过程,包括内核、LED、LCD、网卡、文件系统以及Qt的移植操作步骤。
  • CANOpen
    优质
    本文详细介绍将CANOpen协议移植到不同硬件平台的过程和方法,包括准备工作、软件架构分析、代码实现与调试技巧。 CANopen是一种基于CAN(Controller Area Network)的高层通信协议,在工业自动化设备之间的网络通信中广泛应用。将该协议栈移植到新的硬件平台通常需要遵循以下步骤: 1. **实现CAN收发功能**: - 必须具备基本的驱动程序,以控制CAN控制器进行数据发送和接收。 - 发送时需正确设置标识符(ID)、数据长度(DLC)及数据字段;接收则常采用中断方式处理。 2. **配置时钟**: - 设置一个定时器中断作为最小时间单位。例如每10us触发一次,计算周期如总线时钟为84MHz、预分频器值为83、Period设为9,则定时时间为10微秒。 3. **移植CANopen库文件**: - 使用开源的CANopen库(如canfestival),包含必要的头文件和源代码。 - 需要移植src目录下的源代码,但排除symbols.c文件。 4. **生成对象字典**: - 对象字典用于存储设备配置信息。使用objdictedit工具基于Python 2.7及Gnosis Utils创建该字典,并将其添加到项目中供主机方参考。 5. **配置对象字典参数**: - 定义节点角色(主站或从站),设置心跳、PDO和SDO等参数,确保生成的文件正确无误。 6. **实现CAN发送函数**: - 编写将数据包封装成CAN报文并发送的功能。 7. **调整接收中断回调函数**: - 修改用于处理接收到的数据及解析它们的中断处理程序。 8. **定时器中断管理**: - 调整定时器中断处理器以同步时间。 移植过程中可能会遇到的问题包括波特率设置错误、实时性问题以及对象字典配置不当等。解决这些问题需要深入了解CANopen协议规范,熟悉所用库,并且对目标硬件平台有深刻的理解。 通过以上步骤可以成功地将CANopen协议栈移植到新的硬件平台上,实现设备间的通信功能。
  • U-Boot bootloader过程
    优质
    本文详细介绍U-Boot引导加载程序在特定硬件平台上的移植步骤和技术细节,包括环境配置、代码修改及调试方法。适合嵌入式系统开发人员参考学习。 摘要:嵌入式系统通常不具备通用的引导加载程序(bootloader),而u-boot是一款功能强大的bootloader开发软件,但相对来说也较为复杂。本段落介绍了u-boot的启动流程,并详细阐述了在S3C44B0开发板上进行u-boot移植的方法和步骤。
  • U-Boot过程记录
    优质
    本文档详尽记录了U-Boot在特定硬件平台上的移植全过程,包括环境搭建、代码修改及调试技巧等,为开发者提供实用指导。 mini2400 移植 u-boot 的详细记录:从网上获取的原始 u-boot,移植到 mini2440 的详细过程。
  • 关于S3C2440u-boot说明
    优质
    本文章详细介绍如何将u-boot操作系统引导程序成功移植到基于ARM9内核的S3C2440处理器平台上,适合嵌入式系统开发人员参考学习。 本段落将详细介绍如何基于S3C2440平台进行u-boot的移植工作。通过一系列详细的步骤指导读者完成从源码下载到最终测试验证的过程,并分享一些在实际操作中遇到的问题及解决方案,帮助开发者更好地理解和掌握该过程中的关键技术和注意事项。
  • U-Boot 2020.04
    优质
    本教程详细讲解了如何将U-Boot 2020.04版本移植到特定硬件平台的过程和技巧,适合嵌入式系统开发人员参考学习。 S3C2440处理器上uboot 2020.04版本的移植涉及SDRAM、NAND、NOR Flash、RTC(实时时钟)、LCD显示、USB设备支持以及YAFFS文件系统的配置与应用,此外还包括串口设备。由于yaffs2未经过测试,在实际使用时可能需要根据内核的具体情况进行调整。 **uboot简介** U-Boot是一款开源的引导加载程序,用于启动嵌入式系统中的操作系统。版本选择需考虑兼容性和移植工作量,并非最新版本总是最适合的选择。配置和Linux内核类似,采用Kconfig语法进行设置。 **常用命令** U-Boot的配置通过Kconfig文件实现: 1. `make config`:手动选择所有选项并生成`.config`。 2. `make menuconfig`:基于curses图形界面,使用已有或默认设定值来创建新的`.config`。 3. `make oldconfig`:依据现有的`.config`设置初始配置,并询问新增的参数。 4. `make xx_defconfig`:根据特定硬件平台生成预先定义好的`.config`. 完成以上步骤后执行编译命令。首先通过相应的defconfig文件进行初始化,随后运行`make`来生产所需的二进制或可执行文件如`u-boot.bin` 或者 `u-boot.elf`. **构建系统支持的目标** U-Boot的构建目标与Linux内核相似: - `clean`: 删除大部分生成物但保留配置。 - `mrproper`: 清除所有生成、备份及`.config`. - `distclean`: 更彻底地清理,包括备份和补丁文件。 此外还有各种针对模块化的配置选项如`localmodconfig`, `localyesconfig`. **移植过程** 在S3C2440平台上的U-boot移植需考虑以下组件: 1. **SDRAM**: 配置内存控制器参数确保正确初始化。 2. **NAND/NOR Flash**: 根据硬件选择合适的Flash存储器驱动并配置读写策略。 3. **RTC**:用于日期和时间的设置与获取。 4. **LCD**: 驱动显示器输出,需要进行相应的配置工作。 5. **菜单界面(可能指U-Boot命令行)** 6. **USB设备支持**: 配置USB控制器以确保可以枚举并通信于外设. 7. **YAFFS文件系统**:尽管未测试过,但需确认其在uboot中的兼容性以便后续加载。 移植过程中需要注意内核启动项的修改以适应特定映像和设备树。同时根据实际需求定制U-Boot配置确保所有硬件接口正常工作,并解决编译过程中的依赖问题与错误,最终生成可运行的镜像文件。 将U-boot 2020.04版本移植至S3C2440平台是一个多方面的工程,包括了对硬件驱动、内存管理以及文件系统支持等各层面的需求。成功完成后,这为嵌入式系统的开发与调试提供了稳定的引导服务基础。
  • U-Boot解教程
    优质
    《U-Boot移植详解教程》是一份全面解析嵌入式系统中Universal Boot Loader(U-Boot)移植过程的技术文档,适合开发者深入学习和实践。 建议在开始移植U-Boot之前先阅读前面几个脚本分析文档。
  • VxWorks在Zynq平台上
    优质
    本文详细介绍在Zynq平台下进行VxWorks操作系统移植的具体步骤,旨在帮助读者掌握嵌入式系统开发中关键的操作系统适配技巧。 本段落详细介绍了将VxWorks移植到Zynq平台的过程,包括bootrom、内核(vxWorks与vxworks.sym)的配置以及通过QSPI启动bootrom的方法。此外,还涵盖了文件系统(TFFS)在EMMC上的挂载,并对EMMC驱动进行了调试。文章最后提到了应用程序开发的相关内容。
  • VxWorks在Zynq平台上
    优质
    本文章详细介绍在Zynq平台下进行VxWorks操作系统移植的全过程,包括环境搭建、配置修改及测试验证等关键步骤,旨在帮助开发者高效完成移植工作。 本段落详细介绍了将VxWorks移植到Zynq平台的过程,包括bootrom和内核(vxWorks、vxworks.sym)的配置,并通过QSPI启动bootrom。此外还涉及文件系统(TFFS)挂载至EMMC的操作以及调试EMMC驱动的相关内容,最后简述了应用程序开发方面的知识。
  • STM32上进行uCOS-II
    优质
    本文详细介绍在STM32微控制器平台上移植uCOS-II实时操作系统的具体步骤和方法,帮助读者轻松掌握移植技巧。 详细介绍将uCOS-II移植到STM32硬件平台上的过程。首先需要理解uCOS-II的基本原理及其内核机制,并熟悉目标板STM32的硬件特性与资源分配情况,包括其内存布局、外设配置等信息。 接下来是创建必要的数据结构和变量来匹配STM32的具体需求。这一步骤涉及到对芯片寄存器的操作以及初始化代码的编写。需要根据STM32的数据手册及参考文档进行相应的设置以确保uCOS-II能够正确运行于硬件上,包括时钟系统配置、中断向量表等关键部分。 然后是对uCOS-II源码做必要的修改或补充,使其适应新的环境。这可能涉及到内存管理、任务调度等方面的功能调整,并且要保证移植后的操作系统可以高效地利用STM32的处理能力与资源。 最后一步是进行测试验证阶段,在确保了软件和硬件之间的正确交互后,需要通过一系列严格的测试来确认系统的稳定性和可靠性。这些测试包括但不限于基本功能检查、性能评估以及极端条件下的容错性考察等环节。 整个移植过程要求开发者具备扎实的操作系统理论基础及丰富的嵌入式开发经验,并且能够灵活地解决在实际操作中遇到的各种问题,从而顺利完成将uCOS-II成功迁移到STM32平台的任务。