Advertisement

将电脑电源改为可调电源

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目旨在探讨和实施如何将标准不可调电源改造为可以调节输出电压与电流的电源供应方案,适用于实验及特殊软件需求。 电脑电源不再使用时可以改装成可调电源,用于给电瓶或电池充电。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本项目旨在探讨和实施如何将标准不可调电源改造为可以调节输出电压与电流的电源供应方案,适用于实验及特殊软件需求。 电脑电源不再使用时可以改装成可调电源,用于给电瓶或电池充电。
  • 如何DC-DC控的开关稳压
    优质
    本文章详细介绍了将传统的可调式直流转换器升级为具备高效调节功能的开关模式稳压电源的过程与技巧。通过调整电路设计和参数,实现更稳定的电压输出及更高的能效比。适合电子工程师和技术爱好者深入了解现代电力供应系统的核心技术。 DC-DC开关稳压电路因其高效率及大电流的特点被广泛应用。通过调节反馈分压电阻,可调式DC-DC可以改变输出电压。图1展示了常用的降压型DC-DC芯片LM2596-Adj的应用示例,只需调整R1和R2即可获得所需的输出电压值。 有时我们需要动态地调整电源的输出电压,在这种情况下,最直接的方法是将电阻替换为电位器,并通过手动调节实现电压变化。然而在实际系统应用中,通常需要采用数字控制方式来自动调节电源电压,即所谓的数控开关稳压电源。尽管许多初学者能够使用单片机、DAC(数模转换器)和DC-DC电路进行设计工作,但当他们试图构建一个数控开关稳压装置时,往往会选择数字电位器作为解决方案。 然而,由于成本较高、分辨率有限以及噪声大等问题的存在,实际应用中通常不会选择数字电位器。为了实现电压控制输出的功能,并用DAC来调节该电压值以达到理想的电源管理效果,我们需要设计一种能够通过改变输入电压来进行调整的开关稳压电路。但现实中我们无法重新设计DC-DC芯片本身。 因此,在现有基础上对已有的集成化DC-DC转换器进行改造成为了可行的方法之一:即在保留原有功能的同时增加新的控制机制来实现电压调节的目标。接下来,我们将以LM2596-Adj为例介绍如何将其改造成可以被数字控制系统驱动的开关稳压电源,并附上图2作为参考说明。
  • 戴尔12V 18A13.8V通讯
    优质
    本项目详细介绍如何将戴尔12V 18A电源适配器改装为适用于通信设备的13.8V电源,分享改造步骤和注意事项。 将戴尔12V 18A电源改为13.8V通讯电源。
  • 如何把双
    优质
    本教程详细介绍了将双电源电路转换为单电源操作的方法和步骤,适合电子爱好者和技术人员参考学习。 在电子电路设计领域,运算放大器(Op-Amp)的应用极为广泛。传统上,在许多经典应用图集中,这类组件的设计通常基于双电源供电方案,即正负对称的电压输入方式。然而,在实际操作中,出于成本或便捷性的考虑,单电源供电成为了一种常见的选择。 了解如何将依赖于双电源设计的运算放大器电路转换为适用于单电源环境下的配置是一项重要的技能。首先需要明确的是,运算放大器有两个主要电源引脚:VCC+和GND(或者有时标记为VCC-),在使用时必须参照数据手册中的供电要求来确保电压范围不超过绝对最大值,并且注意其输入输出的摆动限制。 双电源配置下,正负电源通常提供相等的电压差额,例如±15V、±12V或±5V。在这种情况下,电路的所有工作点都是基于地电位(零伏)来定义和计算的。而在单电源设计中,则是通过连接至单一正向供电端口与GND,并且所有操作信号也都以该参考点为基础。 为了实现这种转换,关键步骤之一是在系统内部创建一个所谓的“虚地”电压节点,通常是供电电压的一半值。此虚拟中间电位可以通过简单的分压电路来生成;不过需要注意的是,在使用高阻抗电阻时可能会对系统的低频性能产生不利影响。 在单电源配置中,输入和输出信号都是相对于这个新的参考点定义的。因此,为了保证正确运作,通常会在这些端口加入隔直电容以隔离虚地与实际大地之间的直流电压差异。这种耦合方式能够确保信号能够在不超出运算放大器工作范围的情况下被准确处理。 选择合适的单电源供电型运放时,建议优先考虑轨至轨(Rail-To-Rail)类型的产品,因为这类元件可以提供更宽泛的输出摆幅,并且能从接近正电压到地电位之间自由切换。然而,在具体应用中还需进一步查阅产品手册确认其实际支持的工作范围。 对于复杂的多级放大电路设计来说,如果各级之间的增益保持不变并且所有节点都基于相同的虚地参考,则可以省略掉级间的耦合电容;反之则需要使用交流耦合方式确保信号传递的准确性。这有助于滤除直流偏移并保证各部分之间正确的电气连接。 最后,在组合运算放大器电路设计中,尤其是当成本控制和空间占用成为重要考量因素时,相互之间的耦合会直接影响到诸如噪声、过滤特性等关键参数的表现。因此设计师需要仔细挑选电阻及电容值,并合理安排运放配置以确保整体性能不受影响。 总之,将双电源运算放大器电路转换为适应单电源环境的设计涉及一系列重要的调整措施:包括创建虚地参考点、利用隔直耦合元件以及选择适当的轨至轨型运放等。这些步骤对于保证系统稳定性和优化运行至关重要。设计人员在进行此类转变时必须仔细评估供电方式、元器件选型及信号处理方法,以确保最终产品能在单电源条件下正常运作。
  • 如何DC-DC转换数控稳压
    优质
    本文介绍了将传统的可调式直流变换器升级为具有数字控制功能的稳定电压电源的方法和技术。通过引入微处理器和软件算法优化电压调节精度与响应速度,实现高效、稳定的电力供应解决方案。 该电路经过本人测试是可用的,但存在一些缺点:由于反馈通路增加了一个运放,导致信号出现延迟,反馈信号的相位裕度减小,从而使得输出电压的纹波增大。不过整体性能还是不错的。不知道使用带宽较高的运放是否能有所改善。
  • 流的线性
    优质
    本产品是一款具备可调节输出电压和电流功能的线性电源,适用于实验室、电子产品研发等场景中的精密测试与调试工作。 电流电压线性可调电路图与固纬、龙威等类似。
  • HD4825
    优质
    《华为HD4825电源改装》一文详细介绍了如何对华为HD4825通信电源进行个性化改造的过程与技巧,旨在提升设备性能和适应特定需求。 将华为电源HD4825改装为可调电源,输出电压范围从2V到58V。
  • 流稳压.pdf
    优质
    《可调大电流稳压电源》是一篇详细介绍设计和实现一种能够提供稳定电压输出,并具备宽范围电流调节功能的大功率电源解决方案的技术文档。 在电子实验中经常需要用到低压大电流的稳压直流电源。本电路输出电压可从3V到15V连续调节,并且最大负载电流可达10A。该电路采用了具有温度补偿特性的高精度标准电压源集成电路TL431,以确保稳定的电压输出。这种设计能够满足电子爱好者们一般的实验和检修需求。
  • 在集成路中运放路转换
    优质
    本文探讨了如何在集成电路设计中将传统的双电源运算放大器电路有效转换为适用于现代电子设备的单电源配置的方法与技巧。通过分析和实验,提出了一种简化且高效的转换策略,旨在提升单电源供电系统的性能及稳定性。该研究对推动低功耗、高集成度电子产品的发展具有重要意义。 大多数模拟电路设计者都熟悉如何在双电源电压条件下使用运算放大器,例如图1左边的电路所示。这种双电源通常由一个正电源和与其相等但符号相反的负电源组成,常见的有±15V、±12V 和 ±5V 等配置。在这种情况下,输入电压和输出电压都是相对于地电位定义的,并且存在摆动幅度极限 Vom 以及最大输出摆幅。 对于单电源供电的情况(如图1右侧所示),运放的正负电源引脚分别连接到正电源 (VCC+) 和接地端 (GND)。在这种配置下,通常会将输入电压相对于一个虚拟地电位进行偏置处理,该虚拟地就是 VCC+ 的一半电压值。因此,在这种情况下,运放输出信号同样以这个虚拟地为中心,并且在摆幅范围内(Vom)内变化。 一些新型的运算放大器具有两个不同的最高和最低输出电压限制。