Advertisement

基于空间纯度的端元提取在光谱混合分析中的应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了基于空间纯度的端元提取方法,并应用于光谱混合分析中,以提高复杂场景下物质成分识别和定量分析的精度与可靠性。 基于空间纯度的端元提取方法用于光谱混合分析。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了基于空间纯度的端元提取方法,并应用于光谱混合分析中,以提高复杂场景下物质成分识别和定量分析的精度与可靠性。 基于空间纯度的端元提取方法用于光谱混合分析。
  • MNF
    优质
    本研究聚焦于MNF端元提取技术在高光谱图像处理中的应用,探讨其在目标识别、分类和分析方面的优越性及实际操作中的挑战与解决方案。 利用MNF方法在MATLAB中对高光谱影像进行端元提取。
  • hyperIca.rar_MATLAB高___高估计_高工具
    优质
    hyperIca.rar是一款基于MATLAB的高效高光谱数据分析工具,专为科研人员设计。此软件包内含多种算法以实现快速准确地提取端元光谱并进行高光谱图像的丰度估计,是科学研究中的得力助手。 光谱提取效果好,丰度调整出色,适用于高光谱目标检测和端元提取。
  • MATLAB矿物代码
    优质
    本项目利用MATLAB开发了一套针对矿物混合物进行光谱数据分析与成分提取的程序,旨在高效识别和量化复杂样本中的矿物种类及其比例。 这段代码用于演示“基于深度学习的有限样本高光谱数据分析中的Hapke数据增强”,仅适用于研究目的,并保留所有权利。要运行该代码,请在Matlab中使用文件“test_example_SAE.m”。请引用以下两篇论文:K.Qin等人,“IEEE地质科学与遥感快报”(doi: 10.1109/LGRS.2020.2989796)中的文章;以及秦克、赵玉杰和崔旭的“基于机载高光谱数据的氧化铁信息提取技术研究”,收录于IGARSS2019-2019IEEE国际地球科学与遥感研讨会,日本横滨(doi: 10.1109/IGARSS.2019.8900647)。
  • 学习图像-特征
    优质
    本研究提出一种基于深度学习的方法,用于从高光谱图像中高效地抽取空间和光谱融合特征,以提升图像分类与目标识别性能。 鉴于高光谱遥感数据具有波段多、特征非线性及空间相关等特点,本段落提出了一种基于深度学习的空-谱联合(SSDL)特征提取算法以有效挖掘这些数据中的空-谱特征。该方法采用堆叠自动编码机等多层次深度学习模型对高光谱图像进行逐层训练,从而识别出其中深层次的非线性特性;随后依据每个像素的空间邻近信息,将样本深度特征与空间信息相融合,增强同类地物间的聚集性和不同类地物之间的区分度,进而提升分类效果。在帕维亚大学和萨利纳斯山谷两个高光谱数据集上的实验结果显示,在1%的样本比例下总体分类精度分别达到了91.05%和94.16%,而在使用5%样本的情况下,则进一步提高到了97.38%和97.50%。这些结果表明,SSDL算法通过整合深度非线性特征与空间信息,在提取具有更强鉴别能力的特征方面表现出色,并且相较于同类方法能够获得更高的分类精度。
  • 核单形增长算法
    优质
    本研究提出了一种基于核单纯形增长的方法来优化高光谱图像中的端元检测,有效提升了复杂场景下的材料识别精度和可靠性。 为了有效提取高光谱图像中的端元,在多重散射效应的影响下,线性混合模型可能不再适用。因此,本段落将单纯形增长算法(SGA)扩展为内核版本。在新的单纯形体积公式中没有进行降维处理,并以此为基础形成了改进的单纯形增长算法(NSGA)。原始数据通过非线性映射转换到高维空间,在此空间中可以忽略多重散射的影响。为了简化复杂的非线性映射过程,使用内核函数将NSGA扩展为内核NSGA(KNSGA)。 模拟和真实数据的实验结果显示,提出的KNSGA方法在性能上优于SGA和NSGA。
  • ATGP_高图像;PCA解与
    优质
    本研究探讨了主成分分析(PCA)技术在处理高光谱图像时的应用,特别聚焦于高光谱数据降维及混合像素分离的效能评估。通过实验验证,展示了PCA方法在提升图像解析度和目标识别精度方面的潜力。 本段落主要探讨了高光谱图像中混合像元分解的方法。
  • iPLS特征_iPLS_特征_特征_
    优质
    简介:本文介绍了iPLS(间隔偏最小二乘)方法在特征提取和光谱数据分析中的应用,探讨了其如何有效简化复杂光谱数据并提高预测模型的准确性。 iPLS(迭代部分最小二乘法)是一种在光谱分析领域广泛应用的数据处理技术。它结合了主成分分析(PCA)与偏最小二乘法(PLS)的优点,旨在高效地从高维光谱数据中提取特征,并用于分类或回归分析。这些数据通常包含多个波长的测量值,每个波长对应一个光谱点。 在实际应用中,iPLS常面对的是大量冗余信息和噪声的情况。为解决这些问题,iPLS通过迭代过程逐步剔除与目标变量相关性较低的部分,并保留最关键的特征成分。其工作原理包括: 1. 初始化:选取部分变量(波段)进行PLS回归。 2. 迭代:每次迭代都利用上一步得到的残差重新计算因子,从而剔除非关键因素并强化重要信息。 3. 停止条件:当达到预设的迭代次数或者特征提取的效果不再显著提升时停止操作。 4. 结果解释:最终获得的iPLS因子可用作新的输入变量进行后续建模和分析。 在光谱数据处理中,iPLS方法具有以下优点: 1. 处理多重共线性问题的能力强大; 2. 发现隐藏于高维数据中的关键特征,并有助于减少模型过拟合的风险; 3. 动态优化过程逐步剔除不重要的变量,提高模型的解释性和准确性。 在实际应用中,iPLS被广泛应用于诸如遥感图像的地物分类和生物样本化学成分分析等领域。它能够从复杂的光谱数据集中提取有用的特征信息,并为建立机器学习模型(如支持向量机、随机森林等)提供有效的输入变量。总结来说,iPLS是一种强大的工具,在高维光谱数据分析中发挥着重要作用,通过减少复杂性提高预测能力和解释能力。
  • 自适冗余字典学习(2014年)
    优质
    本文探讨了利用自适应冗余字典学习方法提升高光谱图像中混合像素分解精度的技术,发表于2014年。 为了解决线性稀疏解混模型在识别真实端元时的误差问题,本段落提出了一种基于自适应冗余字典的高光谱混合像元解混算法。该方法利用地物的空间连续性和高光谱数据中的信号成分与光谱库中物质光谱之间的强相关性,首先筛选出每个像素在光谱库上投影系数超过设定阈值对应的光谱,并将其视为最匹配该像素的信号集合;接着将这些集合合并以构建自适应冗余字典;最后应用ADMM算法求解高光谱数据在此字典上的丰度矩阵。通过仿真和实际高光谱数据实验验证,本段落提出的算法能够有效减小丰度估计误差,在信噪比为15到3的情况下尤为显著。
  • 解(Unmixing)
    优质
    光谱混合像元的分解是指通过数学和统计方法分离出混合像素中端元及其丰度信息的过程,在遥感图像分析中有广泛应用。 混合象元分解是遥感图像处理中的关键技术之一,在高光谱成像领域尤为重要。在遥感图像中,每个像素通常包含多种地物的信息,这种现象称为混合像元。混合象元分解的目标是从一个像素的光谱响应中分离出多个纯地物(端元)的贡献,从而提取更详细的地物信息。 主要存在两种模型用于处理遥感图像中的混合象元:线性混合模型和非线性混合模型。在线性混合模型中,假设每个像元的光谱可以表示为各个端元光谱的加权组合,权重即为该端元在像素内的占有率或丰度。这一过程可以用以下数学公式描述: \[ \mathbf{R} = \sum_{i=1}^{n} f_i \mathbf{E}_i + \mathbf{N} \] 其中,\(\mathbf{R}\) 是像元的光谱反射率向量,\(f_i\) 表示第 \(i\) 个端元在该像素中的占有率或丰度值,\(\mathbf{E}_i\) 则是第 \(i\) 个端元的光谱反射率向量;\(n\) 是总的端元数量,而 \(\mathbf{N}\) 表示噪声项。 混合象元分解的关键在于如何有效地估计各个端元和它们在像素中的占有率。一种常用的技术是最小二乘法(Least Squares),通过最小化残差平方和来确定最佳的端元及相应的丰度值。然而,在实际应用中,可能需要加入一些约束条件以确保解的有效性,例如占用率非负性和总和为1。 关于“带限制条件的求解各端元量的方法”,这通常指的是在计算过程中加入了上述提到的一些约束来优化问题解决过程。可以通过多种算法实现这些方法,包括但不限于非负矩阵分解(Non-negative Matrix Factorization, NMF)、迭代最小二乘法、遗传算法以及变分方法等。 “tree_soil - 副本”可能是一份示例数据集,用于展示树木和土壤混合的场景。在进行混合象元分解之前,通常需要对这样的数据执行预处理步骤,例如光谱校正、去噪及大气校正操作以减少误差并提高后续分析的质量。 混合象元分解技术广泛应用于环境监测、资源调查、城市规划以及灾害评估等多个领域。该方法能够帮助识别森林、农田和水体等不同地物的分布情况;在气候变化研究中,它还可用于分析植被变化及土壤湿度等生态指标的变化趋势。 因此,混合象元分解是遥感图像处理中的关键技术之一,通过利用不同的算法与约束条件的应用可以实现对复杂场景的精确解析。对于给定的数据集“tree_soil - 副本”,我们可以通过应用这些技术来分离树木和土壤各自的光谱贡献,从而获得更为详尽的地物信息。