Advertisement

基于 Cholesky 分解的最小二乘法求解 - MATLAB 实现

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目采用MATLAB实现基于Cholesky分解的最小二乘法求解算法,适用于线性方程组的高效、稳定计算。 此函数计算使 norm(bA*x) 最小化的 n 维列向量 x,其中 A 是 m×n 系数矩阵,b 是一个 m 维右侧列向量(m 远大于 n)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Cholesky - MATLAB
    优质
    本项目采用MATLAB实现基于Cholesky分解的最小二乘法求解算法,适用于线性方程组的高效、稳定计算。 此函数计算使 norm(bA*x) 最小化的 n 维列向量 x,其中 A 是 m×n 系数矩阵,b 是一个 m 维右侧列向量(m 远大于 n)。
  • Python
    优质
    本文详细介绍了如何使用Python编程语言来实现最小二乘法,包括线性回归模型的应用和代码实例,适合初学者入门学习。 最小二乘法(Least Square Method)是一种广泛应用的数学方法,在统计学和数据分析领域具有悠久的历史(由法国数学家马里·勒让德于1806年提出)。该方法通过最小化预测值与实际观测值之间的误差平方和来寻找最佳拟合模型。这种方法至今仍然是线性回归及曲线拟合的核心工具。 在应用最小二乘法时,我们通常有一个数据集 (x, y),其中 x 是自变量,y 是因变量。我们的目标是找到一个函数 h(x) 来尽可能接近这些数据点。为了衡量这种拟合程度,引入了“残差”的概念——每个数据点的实际值 y 与拟合函数 h(x) 的预测值之间的差异。 在实践中,有三种常见的范数用于度量残差: 1. ∞-范数(最大绝对误差):所有数据点的残差绝对值中的最大值。 2. 1-范数(绝对误差和):所有数据点的残差绝对值总和。 3. 2-范数(平方误差和):所有数据点的残差平方之和,也就是误差平方和。 其中,由于计算简单且便于进行微分运算,2-范数是最常用的评估标准。最小二乘法的目标就是找到一个函数 h(x) ,使得它的残差的 2-范数达到最小值: 式中,h(x) 是拟合函数;w 是模型参数;N 表示数据点的数量;x_i 和 y_i 分别是第 i 个数据点的自变量和因变量。 当拟合函数为线性形式时(如 h(x) = w1 * x + w0),可以通过对损失函数求偏导数并令其等于零来解决最小二乘法问题。通常使用的损失函数是平方损失函数,即 Q(w),其中 Q(w) 是风险函数。 在 Python 中,可以使用 scipy 库中的 `leastsq` 函数实现最小二乘法的计算。以下是一个简单的例子: ```python import numpy as np from scipy.optimize import leastsq def real_func(x): return np.sin(2 * np.pi * x) def fit_func(p, x): f = np.poly1d(p) return f(x) def residuals_func(p, y, x): return fit_func(p, x) - y x = np.linspace(0, 1, 9) y0 = real_func(x) y1 = [np.random.normal(0, 0.1) + y for y in y0] p_init = np.random.randn(n) plsq = leastsq(residuals_func, p_init, args=(y1, x)) print(Fitting Parameters:, plsq[0]) ``` 这段代码首先定义了目标函数、拟合函数和残差函数,然后生成带噪声的数据。最后使用 `leastsq` 函数找到多项式的参数,并输出结果。 最小二乘法是一种有效的数据逼近方法,在构建各种线性和非线性模型时被广泛应用。通过 Python 的科学计算库可以方便地实现这一方法,进行数据分析和拟合。
  • 相位包裹
    优质
    本研究提出了一种基于最小二乘法的高效算法,用于精确解决相位解包裹问题,提高信号处理与图像分析中的数据准确性。 采用最小二乘法,在MATLAB编程语言中实现位相解包裹。
  • Matlab代码
    优质
    本项目提供了一个使用MATLAB编写的程序,用于实现最小二乘法。该代码简洁高效,适用于多项式拟合等多种应用场景,是数据分析和科学计算中的实用工具。 最小二乘法是一种在数据拟合中广泛应用的数学方法,在工程、物理、统计及数据分析等领域有重要应用。它通过寻找使残差平方和最小化的线性模型参数来逼近观测数据点。本段落将探讨如何利用MATLAB的强大计算能力解决最小二乘问题,首先需要理解其基本原理:假设我们有一组观测数据点(x_i, y_i),目标是找到一条直线y = ax + b(或更复杂的函数形式)以最佳拟合这些数据。最小二乘法的目标是最小化所有观测点到这条线的垂直距离平方和,即残差平方和Σ((y_i - (ax_i + b))^2)。 通过求解目标函数对参数a、b偏导数并令其为零,可以得到一个关于这两个变量的方程组,进而求得最佳拟合参数。在MATLAB中,`lsqcurvefit`函数可用于实现这一过程;它是一个非线性最小二乘问题的通用求解器。 关键步骤包括:1. 数据预处理:读取观测数据,并将x和y值存储为向量或矩阵形式;2. 定义模型函数,例如线性、多项式等拟合类型;3. 设置初始参数估计;4. 使用`lsqcurvefit`函数进行计算,输入包括模型函数、观测数据及初始参数以获得最佳拟合参数;5. 计算残差评估拟合质量;6. 绘制结果对比原始数据点展示拟合效果。 `lsqcurvefit`通过迭代优化算法如梯度下降或牛顿法来最小化目标函数。除了处理线性问题,该工具还能应对非线性情形,只需用户定义相应模型即可。此外,MATLAB还提供了其他相关功能,例如`lsqnonlin`用于解决非线性最小二乘问题以及专门针对带约束条件的最小二乘问题的`lsqlin`。 如果涉及到L1正则化(即利用L1范数惩罚),这通常是为了实现稀疏解,在信号处理和机器学习中十分常见。附加文档可能包含对此方法更详细的解释、理论背景及代码使用说明,帮助理解并指导实际应用中的操作步骤。通过此MATLAB实例的学习与实践,可以掌握如何在不同情境下运用最小二乘法解决具体问题。
  • MATLABPLS偏
    优质
    本简介介绍了一种利用MATLAB软件实现PLS(偏最小二乘法)的方法。通过详细编程步骤和实例演示,为数据分析提供有效工具。 请参考我找到的关于偏最小二乘法在Matlab中的实现资料。我已经将相关文件打包好,你可以慢慢查看。希望这些资源对你有所帮助!
  • MATLAB
    优质
    本研究利用MATLAB软件平台实现了偏最小二乘法(PLS)的算法,并对其在数据处理中的应用进行了探讨。 所谓偏最小二乘法是指在进行基于最小二乘法的线性回归分析之前,对数据集进行主成分分析以实现降维处理。下面提供的源码由GreenSim团队免费提供使用,请在引用时注明来源为GreenSim团队。
  • 包裹问题
    优质
    本文探讨了利用最小二乘法解决包裹打包和运输中的优化问题,通过数学建模提高包装效率及减少物流成本。 最小二乘法解包裹的使用代码包括LSunwrap.m、unwrapphase.m和wrapphase.m三个文件。
  • MATLAB代码
    优质
    本项目旨在利用MATLAB编程环境开发偏最小二乘回归算法的实现,适用于多元线性数据分析与建模。提供详细注释及示例数据以供学习研究使用。 一个偏最小二乘法的应用实例希望能对读者有所帮助。
  • MATLAB
    优质
    本文将详细介绍如何在MATLAB环境中利用内置函数和自定义代码来实现最小二乘法,包括线性与非线性模型的求解方法。 这是上课后总结老师的经典内容,对于初学者来说是很好的资源。
  • MATLAB
    优质
    本篇文章详细介绍了如何在MATLAB环境中运用最小二乘法进行数据拟合和参数估计,并提供了具体的代码示例。 使用在MATLAB中学到的知识编写最小二乘法拟合程序,以解决物理实验中的曲线拟合及相关系数等问题。