Advertisement

操作系统银行家算法的实验报告,并附带源代码。

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
在大学大三上学期所进行的操作系统课程实验中,学生们需要完成一项作业,即模拟银行家算法的实现。这份实验作业的代码设计十分出色,格式清晰规范,并且包含了详尽的注释,旨在为有学习需求的人士提供宝贵的参考资料和学习借鉴。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本实验报告详细探讨了银行家算法在操作系统中的应用,通过模拟系统资源分配与死锁避免机制,并提供了相应的实验代码。 银行家算法实验(包括系统安全性检验) 文档附录包含代码。
  • 优质
    本实验报告详细探讨了银行家算法在操作系统中的应用,并通过编程实践验证其解决死锁问题的有效性,附有完整的源代码供参考和学习。 本报告介绍了避免死锁的银行家算法在C语言中的实现方法,并包含了编程思路及最终代码。
  • 优质
    本实验报告深入探讨了银行家算法在操作系统中的应用,并提供了详细的实现源代码。通过模拟系统资源管理,验证了该算法预防死锁的有效性。 大三上学期的操作系统课程的实验作业要求模拟实现银行家算法。代码格式良好,并配有适当的注释,可供需要的人参考学习。
  • 二——.docx
    优质
    本报告为《操作系统》课程中“银行家算法”的实验总结。通过模拟系统资源分配与调度过程,验证了预防死锁策略的有效性,并分析了其工作原理及应用场景。 为了理解银行家算法,首先需要了解操作系统中的安全状态与不安全状态的概念。如果能够找到一个由系统内所有进程构成的安全序列P1, …, Pn,则可以认为系统处于安全状态,并且在这种状态下不会发生死锁现象。
  • 优质
    本实验报告深入探讨了银行家算法在操作系统死锁预防策略中的应用。通过模拟资源分配与进程执行过程,验证了该算法的有效性及其在避免系统死锁方面的优越性能。 操作系统银行家算法的详细实验报告包含代码并可运行,配有图形化界面展示算法过程。
  • 优质
    本实验报告探讨了银行家算法在操作系统资源分配与死锁预防中的应用。通过模拟系统运行情况,验证了该算法的有效性和实用性,为深入理解死锁避免机制提供了实践依据。 南昌大学操作系统实验报告:编程实现银行家算法。该报告包含流程图、实现代码以及运行结果截图,并附有对实验的小结体会和个人感悟。此实验报告是我在大二期间完成的。
  • VC++
    优质
    本项目提供了一个基于VC++编写的银行家算法实现代码,适用于教学和研究目的的操作系统实验中。它帮助学生理解死锁预防策略,并通过编程实践加深对资源分配与管理机制的认识。 银行家算法实验 **1. 实验目的与要求** 通过编写并调试一个简单的银行家算法程序加深对资源申请、避免死锁等相关概念的理解,并体会具体实施方法。 **2. 实验内容** - 设计进程对各类资源最大需求量的表示及初始值确定。 - 定义系统提供的资源初始状况。 - 规定每次某个进程提出的各种类型资源请求的具体表现形式。 - 编写程序,依据银行家算法决定某一申请是否被满足。 **3. 实验说明** 假设存在M个进程和N类资源,则需要以下数据结构: MAX[M*N]:表示每个进程中各类资源的最大需求量 AVAILABLE[N]:系统当前可用的各类型资源的数量 ALLOCATION[M*N]:记录各个进程已获得的各种类型的资源数量。 NEED[M*N] : 表示每一个进程还需要哪些种类和多少数量的资源。 **4. 银行家算法规则** 当某一个请求Request[N]由某一特定进程提出时,按照如下步骤进行判断: (1) 若 Request[N]<= NEED[I,N], 则继续执行下步;否则报错。 (2) 如果上述条件满足且 Request[N]<= AVAILABLE, 继续执行下一步骤;若不满足,则同样需要报告错误信息。 (3) 系统尝试分配资源,更新相关数据: - AVAILABLE -= REQUEST - ALLOCATION += REQUEST - NEED -= REQUEST (4) 进行安全性检查:如果发现安全状态成立,则确认此次请求可以被接受;否则取消试探性分配并恢复原状,进程需要等待。 **5. 安全性检测** 设置两个工作向量: - WORK = AVAILABLE; - FINISH[M] = FALSE; 然后从未完成的进程中找到满足以下条件的一个:FINISH[i]=FALSE 并且 NEED <= WORK。如果找到了这样的一个进程,则执行步骤(3);否则,直接进入下一步。 **6. 参考代码** ```cpp #include #include #define M 5 // 总的进程数 #define N 3 // 资源种类的数量 // 定义布尔值类型FALSE和TRUE const int FALSE = 0; const int TRUE = 1; int MAX[M][N]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}}; // 每个进程对资源的最大需求量 int AVAILABLE[N]={10,5,7}; // 系统可用的各类资源数量 int ALLOCATION[M][N]={{0,0,0},{0,0,0},{0,0,0},{0,0,0},{0,0,0}}; // 各进程已分配到的各种类型的资源量 int NEED[M][N]={{7,5,3},{3,2,2},{9,0,2},{2,2,2},{4,3,3}}; // 每个进程中各类资源的剩余需求量 // 申请向量 int Request[N]={0}; ```
  • ——(含界面).rar
    优质
    本资源为《操作系统实验报告——银行家算法》提供详尽解析与实现代码,并包含用户友好型界面设计。探讨并实践了系统安全性和稳定性增强策略,适用于教学和研究参考。 本项目包含操作系统实验的源代码及详细报告。实验内容为模拟银行家算法,并使用C++语言实现程序逻辑,MFC框架构建用户界面。文件内提供了一份无错误的完整源码和一份详尽的实验报告。
  • 业调度与及Java
    优质
    本实验报告详细探讨了作业调度机制和银行家算法在操作系统中的应用,并附有相关Java语言的源代码实现。通过该实验,学生能够深入理解资源分配和死锁预防策略的实际操作技巧。 操作系统实验报告包括两个部分:一是利用Java实现的作业调度;二是使用Eclipse编写并实现了银行家算法的源代码及相应的实验报告文档。
  • 模拟(含
    优质
    本项目通过编程实现银行家算法在操作系统资源分配中的应用,包含详细的实验报告和完整代码,旨在帮助理解和掌握死锁预防机制。 【实验目的】1. 理解死锁的概念;2. 使用高级语言编写并调试一个银行家算法程序以加深对死锁的理解。 【实验准备】 1. 产生死锁的原因: - 资源竞争导致的死锁; - 进程推进顺序不当引起的死锁。 2. 生成死锁所需满足的条件: - 互斥条件 - 请求与保持条件 - 不剥夺条件 - 环路等待条件 3. 处理死锁的基本方法: - 预防死锁; - 避免死锁; - 检测死锁; - 解除死锁。 【实验内容】1. 实验原理:银行家算法从当前状态出发,逐个按安全序列检查各客户中谁能完成其工作。假定某进程完成后归还所有资源,并进一步考察下一个能完成工作的客户。如果所有客户都能顺利完成任务,则找到一个安全序列,此时系统是处于安全状态的。相比预防死锁的方法而言,银行家算法限制条件较少且提高了资源利用率;但该方法要求客户的数量保持不变,在多道程序环境下难以实现;此外它保证了所有请求在有限时间内得到满足,但这可能不适合实时响应的需求。 2. 实验题目:设计一个包含五个进程(P0、P1、P2、P3和P4)的系统,并让这些进程共享三类资源(A, B, C),其中A类型有十个单位,B类型有五单位,C类型则为七个。要求程序能够显示并打印出某时刻各进程的资源分配表及安全序列;同时也能展示每个进程依次请求的各类资源数量以及在某个特定情况下为某一指定进程分配后的相关数据。 3. 算法描述:引入了两个向量Resourse(表示总的可用资源数)和Available(剩余可提供给其他客户的未使用资源),此外还有Claim矩阵(记录各客户对每种类型所需的最大单位数量的声明)以及Allocation矩阵(展示当前分配状态)。银行家算法的核心在于通过试探性地为请求资源的进程进行模拟分配,来判断系统是否处于安全状态。 举例来说,在一个单一资源即资金的场景下,如果存在四个客户A、B、C和D,则下列情况表示一种安全的状态:其中一个可能的安全序列是 C->D->B->A。测试结果如下: - 进程数量:5 - 资源种类数:4 - 各种资源的数量分别为6, 3, 4, 2; - 分配矩阵: - P0 : (3, 0, 1, 1) - P1 : (0, 1, 0, 0) - P2 : (1, 1, 1, 0) - P3 : (1, 1, 0, 1) - P4 : (0 ,0 ,0 ,0) - 需求矩阵: - P0: (1, 1, 0, 0) - P1: (0, 1, 1, 2) - P2: (3, 1, 0, 0) - P3: (0 ,0 ,1 ,0) - P4 : (2 ,1 ,1 ,0) 经过测试,系统存在8种可能的安全序列。这说明当前状态下,尽管进程间对资源的竞争激烈,但通过适当的调度策略仍能避免进入死锁状态,并确保所有请求最终能够得到满足。