本文提出了一种改良的基于进化状态的粒子群优化算法,旨在提高算法在解决复杂问题时的有效性和稳定性。通过模拟自然进化的机制,改进了传统粒子群算法中的搜索策略和参数调整方式,从而增强其全局寻优能力并减少陷入局部最优解的风险。该方法已在多个典型测试函数上进行了验证,并展示了优越的性能表现。
粒子群优化(Particle Swarm Optimization, PSO)是一种模拟鸟群觅食行为的群体智能算法,由James Kennedy和Russell Eberhart于1995年提出。该算法通过模仿鸟类在寻找食物过程中的信息共享与合作来解决复杂问题。每个个体代表可能解的一部分,在搜索空间内移动以探索最优解的位置。粒子的速度和位置更新依据自身找到的最佳位置(个人最佳)以及整个群体中发现的最好位置(全局最佳)。
进化因子是PSO算法中用于指导粒子行为的关键参数,它决定了粒子对上述两种情况依赖的程度。在标准版本里,这个值被固定下来。但在实践中,这种静态设定难以应对所有问题的特点和不同迭代阶段的需求变化。因此,研究者们开发了基于进化状态估计的自适应粒子群优化算法(Adaptive Particle Swarm Optimization, APSO),该方法利用动态评估种群当前进展的思想来调整参数设置。
Zhan等人提出了一套计算进化因子的方法,其中涉及到了距离的概念:若个体倾向于聚集,则认为系统接近收敛阶段;反之,如果分布较为广泛,则表明群体处于探索新区域的阶段。这种方法通过调节算法中的关键变量dg(从全局最优到其他粒子的距离平均值)来影响搜索策略。
赵海娜和孙长银进一步改进了这一方法,引入了一种基于聚类中心概念的新计算进化因子的方法:他们建议使用每个个体与群体中心位置之间的距离来进行更新。这样可以更精确地估计当前的探索状态,并据此调整算法参数以实现动态优化。这种方法提高了PSO在处理复杂问题时的表现和效率。
通过一系列实验验证,改进后的PSO算法显示出更快的收敛速度、减少迭代次数以及找到更好的解的能力。这证明了基于进化状态估计的方法对于提高粒子群优化性能的有效性。赵海娜与孙长银所提出的改进措施不仅增强了算法在全局搜索中的表现力,也提升了其局部探索能力,在理论研究和实际应用上都具有重要意义。