Advertisement

基于MPI的KNN算法并行实现1

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究探讨了在分布式内存计算环境中采用消息传递接口(MPI)技术对经典的K近邻(K-Nearest Neighbors, KNN)算法进行高效并行化的方法,旨在提高大规模数据集上的分类和回归任务的处理速度与效率。通过优化通信模式及负载均衡策略,我们提出了一种创新性方案以显著减少计算时间,同时保持模型精度不变。 # 基于MPI的并行KNN算法实现 ## 引言 在并行计算领域广泛应用的通信协议是MPI(Message Passing Interface),它为开发分布式内存并行程序提供了一套标准接口。本段落档将介绍如何利用C++和MPI来实现K-Nearest Neighbor (KNN) 算法的并行化版本。 ## 一、KNN算法 ### 1.1 距离度量 计算实例之间的相似性是KNN算法的核心,常用的距离度量包括曼哈顿距离和欧式距离: - **曼哈顿距离**:( d = sum_{i=1}^{n} |x_i - y_i| ) - **欧式距离**:( d = sqrt{sum_{i=1}^{n} (x_i - y_i)^2} ) ### 1.2 k值的选择 k值是KNN算法的重要参数,表示考虑的最近邻的数量。合适的k值可以通过交叉验证等方法选择,一般取较小的整数值。 ### 1.3 分类决策规则 KNN算法采用多数表决原则,即新实例的类别由其k个最近邻中出现最多的类别决定。 ## 二、MPI ### 2.1 MPI简介 提供一组可移植编程接口的是MPI,它支持进程间通信。这使得并行程序可以在不同计算节点上协同工作。通常包含以下关键函数: - **初始化**:`MPI_Init` - **结束**:`MPI_Finalize` - 获取当前进程ID的函数是 `MPI_Comm_rank` - `MPI_Comm_size` 函数获取的是进程组中的进程总数。 - 将消息从一个根进程发送到所有其他进程中去使用的函数为 `MPI_Bcast` - 分散数据,将一个大数组分发给各个进程的函数为 `MPI_Scatter` - 收集数据,并将各个进程的数据合并成一个大数组的是` MPI_Gather` ## 三、基于MPI的并行KNN算法 ### 3.1 算法流程 1. **读取训练和测试数据**。 2. **归一化处理特征值**,确保不同特征在同一尺度上。 3. KNN: - 使用`MPI_Scatter`将训练集分散到各进程。 - 每个进程计算其部分训练集与测试实例的距离。 - 利用 `MPI_Gather` 收集所有进程的计算结果。 - 在主进程中找到k个最近邻并进行分类决策。 4. **汇总预测结果**。 ### 3.2 函数及变量 - **全局函数和变量**:用于数据处理和通信,如读取数据、距离计算等。 - 关键变量包括进程ID(myid)和进程总数(numprocs)等。 ### 3.3 算法运行 - 设置参数,例如k值以及数据集路径。 - 注意事项是确保MPI环境正确配置,并避免由于不均匀的数据分割导致性能下降。 - 运行方法是在Windows环境下通过命令行指定MPI编译器和程序。 ## 四、实验 ### 4.1 数据集 描述了特征数量,类别及实例数等信息的参数。 ### 4.2 实验结果 - **算法准确率**:评估预测准确性。 - **运行时间**:对比并行与非并行版本的效率。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • MPIKNN1
    优质
    本研究探讨了在分布式内存计算环境中采用消息传递接口(MPI)技术对经典的K近邻(K-Nearest Neighbors, KNN)算法进行高效并行化的方法,旨在提高大规模数据集上的分类和回归任务的处理速度与效率。通过优化通信模式及负载均衡策略,我们提出了一种创新性方案以显著减少计算时间,同时保持模型精度不变。 # 基于MPI的并行KNN算法实现 ## 引言 在并行计算领域广泛应用的通信协议是MPI(Message Passing Interface),它为开发分布式内存并行程序提供了一套标准接口。本段落档将介绍如何利用C++和MPI来实现K-Nearest Neighbor (KNN) 算法的并行化版本。 ## 一、KNN算法 ### 1.1 距离度量 计算实例之间的相似性是KNN算法的核心,常用的距离度量包括曼哈顿距离和欧式距离: - **曼哈顿距离**:( d = sum_{i=1}^{n} |x_i - y_i| ) - **欧式距离**:( d = sqrt{sum_{i=1}^{n} (x_i - y_i)^2} ) ### 1.2 k值的选择 k值是KNN算法的重要参数,表示考虑的最近邻的数量。合适的k值可以通过交叉验证等方法选择,一般取较小的整数值。 ### 1.3 分类决策规则 KNN算法采用多数表决原则,即新实例的类别由其k个最近邻中出现最多的类别决定。 ## 二、MPI ### 2.1 MPI简介 提供一组可移植编程接口的是MPI,它支持进程间通信。这使得并行程序可以在不同计算节点上协同工作。通常包含以下关键函数: - **初始化**:`MPI_Init` - **结束**:`MPI_Finalize` - 获取当前进程ID的函数是 `MPI_Comm_rank` - `MPI_Comm_size` 函数获取的是进程组中的进程总数。 - 将消息从一个根进程发送到所有其他进程中去使用的函数为 `MPI_Bcast` - 分散数据,将一个大数组分发给各个进程的函数为 `MPI_Scatter` - 收集数据,并将各个进程的数据合并成一个大数组的是` MPI_Gather` ## 三、基于MPI的并行KNN算法 ### 3.1 算法流程 1. **读取训练和测试数据**。 2. **归一化处理特征值**,确保不同特征在同一尺度上。 3. KNN: - 使用`MPI_Scatter`将训练集分散到各进程。 - 每个进程计算其部分训练集与测试实例的距离。 - 利用 `MPI_Gather` 收集所有进程的计算结果。 - 在主进程中找到k个最近邻并进行分类决策。 4. **汇总预测结果**。 ### 3.2 函数及变量 - **全局函数和变量**:用于数据处理和通信,如读取数据、距离计算等。 - 关键变量包括进程ID(myid)和进程总数(numprocs)等。 ### 3.3 算法运行 - 设置参数,例如k值以及数据集路径。 - 注意事项是确保MPI环境正确配置,并避免由于不均匀的数据分割导致性能下降。 - 运行方法是在Windows环境下通过命令行指定MPI编译器和程序。 ## 四、实验 ### 4.1 数据集 描述了特征数量,类别及实例数等信息的参数。 ### 4.2 实验结果 - **算法准确率**:评估预测准确性。 - **运行时间**:对比并行与非并行版本的效率。
  • MPIPSRS排序
    优质
    本研究提出了一种基于MPI的PSRS(Pair-Sample Recursive Sorting)并行排序算法实现方法,有效提高了大规模数据集上的排序性能。 使用MPI计算的完整的PSRS(并行排序)代码适用于并行计算课程实验。
  • MPI枚举排序
    优质
    本研究提出了一种基于消息传递接口(MPI)的高效枚举排序并行算法实现方法,旨在优化大规模数据处理中的排序操作性能。通过深入分析和实验验证,展示了该算法在多处理器环境下的优越性与广泛应用潜力。 枚举排序是一种简单的排序算法,其核心思想是对每个待排序的元素统计小于它的所有元素的数量,从而确定该元素在最终序列中的位置。实现这种算法的并行化相对简单:假设对一个长度为n的输入序列使用n个处理器进行排序,可以安排每个处理器负责处理其中一个元素的位置定位任务。然后将所有的定位信息汇总到主进程处,由主进程完成所有元素的确切排列。
  • MatVec-MPIMPI稀疏矩阵向量
    优质
    简介:本文介绍了MatVec-MPI,一种高效的稀疏矩阵-向量乘法并行计算方法,利用MPI在多处理器环境中实现了显著加速,适用于大规模科学与工程计算。 在使用 MPI 并行化稀疏矩阵向量乘法的过程中,在第一步采用一维行分解读取文件并将数据分配给所有处理器,这需要 O(n) 时间复杂度然后是O(nnz),其中 n 代表行数而 nnz 表示非零元素的数量。矩阵 A 的数据以 CSR(Compressed Sparse Row)格式读入并存储,在这种格式下包括三个数组:行指针、列索引和值。 在第一步中,使用 MPI Bcast 将数据分发给 p 个处理器,并且每个进程准备通过 prepareRemoteVec 函数获取它需要的非本地向量元素。在此过程中,遍历矩阵的局部列索引来确定所需的远程向量条目是什么,在调整了本地向量的数据数组大小后(新的大小为 vSize + numRemoteVec),以在末尾保存来自其他处理器的附加远程向量条目。 最后一步是重新映射本地列索引数组,即之前指向全局向量数据索引的部分。通过遍历这个局部列索引数组,并将其调整到正确的指向下标位置来完成这一过程。
  • MPI粒子群技术
    优质
    本研究探讨了利用MPI(消息传递接口)对粒子群优化算法进行高效的并行化处理方法,旨在提升大规模问题求解效率。 该PPT为PAC2015参赛作品的技术报告。
  • SpmvMPIMPI+CUDA
    优质
    本文探讨了稀疏矩阵向量乘法(SPMV)在高性能计算中的MPI和MPI+CUDA混合编程技术,并分析了它们的性能特征。 Spmv的串行和CPU、GPU并行性能测试demo展示了如何评估不同计算架构下的稀疏矩阵向量乘法操作效率。这种测试对于优化高性能计算应用至关重要,能够帮助开发者了解在不同的硬件平台上实现spmv算法的最佳实践方法。通过比较串行执行与多核CPU及图形处理器(GPU)的并行处理能力,可以揭示各种技术方案的优势和局限性,从而指导更高效的软件设计和技术选择。
  • MPI矩阵乘
    优质
    本项目探索了利用消息传递接口(MPI)进行大规模矩阵乘法计算的有效并行化策略,旨在优化高性能计算环境下的数据处理效率。 在Linux环境下成功实现了矩阵乘法的MPI并行运算,并使用mpicc进行编译生成可执行文件,通过mpirun命令运行程序。
  • MPI二维热传导(Heat Distribution)
    优质
    本研究设计了基于MPI的二维热传导问题并行计算方案,实现了高效的热分布模拟,显著提升了大规模数据处理中的计算效率和速度。 墨尔本大学研究生并行计算课程的一个作业包括一个Sequential代码、一个使用blocking communication的并行代码以及一个使用nonblocking communication的并行代码,所有这些均用C语言编写,并附有完整的报告。该程序可在集群计算机上进行并行运行。
  • MPI.pdf
    优质
    本论文探讨了基于消息传递接口(MPI)的并行计算技术,深入分析其在高性能计算中的应用与优化策略。 关于MPI与并行计算的总结对比: 1. 并行计算 1.1 相关背景 1.2 什么是并行计算 1.3 主要目的 1.4 并行计算与分布式计算的区别 1.5 并行的基本条件 1.6 主要的并行系统 - 1.6.1 共享内存模型 - 1.6.2 消息传递模型 - 1.6.3 数据并行模型 - 1.6.4 对比分析 2 MPI 2.1 什么是MPI 2.2 MPI的实现方式 2.3 MPI基本函数介绍 2.4 MPI功能特点 2.5 技术对比分析 - 2.5.1 共享内存模型(以OpenMP为例) - 2.5.2 分布式内存模型 3 问题解释 3.1 并行计算和MPI是什么关系?为了实现并行计算,是否使用MPI技术即可实现? 3.2 MPI技术原理是什么,即基础设施提供什么样的支持能力? 3.3 为了实现并行计算,应用软件需要什么样的特殊设计 3.4 哪些类型的软件需要并行计算 4 部分参考资料
  • MPI快速排序
    优质
    本研究探讨了在MPI框架下快速排序算法的高效并行化策略,旨在提高大规模数据集上的处理速度和资源利用率。 利用MPI实现快速排序的并行算法,并用C语言进行编程。