Advertisement

基于BERT、CRF和BiLSTM的实体识别构建医学知识图谱

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本研究利用BERT、CRF及BiLSTM技术结合,优化医学文本中的命名实体识别精度,助力高效构建精准的医学知识图谱。 在构建医学知识图谱的过程中,实体识别(Entity Recognition, ER)是至关重要的一步,它涉及到从非结构化的文本中抽取出具有特定意义的实体,如疾病、症状、药物等。BERT(Bidirectional Encoder Representations from Transformers)是近年来自然语言处理领域的一个突破性模型,而CRF(Conditional Random Fields)和BiLSTM(Bidirectional Long Short-Term Memory)则是序列标注任务中的常用工具。本项目将这三者结合,以提升在医学文本中进行实体识别的精度。 BERT是一种预训练语言模型,其创新之处在于利用Transformer架构实现了双向上下文的理解。在预训练阶段,BERT通过Masked Language Modeling和Next Sentence Prediction两个任务学习到丰富的语言知识。在实体识别任务中,我们可以将BERT的预训练模型作为基础,并进行微调使其适应特定领域的文本,如医学文献。 接下来,BiLSTM是一种特殊的循环神经网络,它能够同时考虑前向和后向的信息流,从而更好地捕捉序列中的长期依赖关系。在实体识别任务中,BiLSTM可以对输入序列的每个位置进行特征提取,并为后续分类决策提供上下文信息。 CRF(条件随机场)是一种统计建模方法,在序列标注任务中有广泛应用。与简单的分类模型相比,CRF能够考虑当前预测标签及其前后标签的关系,以提高整个序列的一致性。在BERT和BiLSTM提供的特征基础上,CRF层可以优化整个序列的标签分配,并减少孤立错误标签的出现。 将这三者结合起来,我们可以构建一个高效的实体识别系统:BERT负责获取深度语义表示;BiLSTM捕捉序列信息;而CRF则优化整个序列的标签分配。这种架构在处理复杂的医学文本时能够更好地理解上下文环境、准确地识别出实体并进行合理的边界划分。 实际应用中建立医学知识图谱通常包括以下步骤: 1. 数据准备:收集相关文献和报告,对数据进行预处理(如分词、去除停用词等)。 2. 模型构建:结合BERT、BiLSTM和CRF构建实体识别模型,并对其进行训练。 3. 实体识别:利用训练好的模型从新文本中提取疾病、药物、症状等相关信息。 4. 关系抽取:进一步分析这些实体之间的关系,如疾病的症状或治疗的用药情况等。 5. 知识图谱构建:将上述提取出的信息组织成知识库的形式。 6. 应用服务:利用建立的知识图谱为医疗诊断支持、药物推荐及临床决策提供帮助。 通过这样的流程,我们可以创建一个强大的医学知识图谱,从而促进医疗健康行业的智能化发展。同时不断迭代和优化模型可以进一步提高知识图的质量与实用性。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • BERTCRFBiLSTM
    优质
    本研究利用BERT、CRF及BiLSTM技术结合,优化医学文本中的命名实体识别精度,助力高效构建精准的医学知识图谱。 在构建医学知识图谱的过程中,实体识别(Entity Recognition, ER)是至关重要的一步,它涉及到从非结构化的文本中抽取出具有特定意义的实体,如疾病、症状、药物等。BERT(Bidirectional Encoder Representations from Transformers)是近年来自然语言处理领域的一个突破性模型,而CRF(Conditional Random Fields)和BiLSTM(Bidirectional Long Short-Term Memory)则是序列标注任务中的常用工具。本项目将这三者结合,以提升在医学文本中进行实体识别的精度。 BERT是一种预训练语言模型,其创新之处在于利用Transformer架构实现了双向上下文的理解。在预训练阶段,BERT通过Masked Language Modeling和Next Sentence Prediction两个任务学习到丰富的语言知识。在实体识别任务中,我们可以将BERT的预训练模型作为基础,并进行微调使其适应特定领域的文本,如医学文献。 接下来,BiLSTM是一种特殊的循环神经网络,它能够同时考虑前向和后向的信息流,从而更好地捕捉序列中的长期依赖关系。在实体识别任务中,BiLSTM可以对输入序列的每个位置进行特征提取,并为后续分类决策提供上下文信息。 CRF(条件随机场)是一种统计建模方法,在序列标注任务中有广泛应用。与简单的分类模型相比,CRF能够考虑当前预测标签及其前后标签的关系,以提高整个序列的一致性。在BERT和BiLSTM提供的特征基础上,CRF层可以优化整个序列的标签分配,并减少孤立错误标签的出现。 将这三者结合起来,我们可以构建一个高效的实体识别系统:BERT负责获取深度语义表示;BiLSTM捕捉序列信息;而CRF则优化整个序列的标签分配。这种架构在处理复杂的医学文本时能够更好地理解上下文环境、准确地识别出实体并进行合理的边界划分。 实际应用中建立医学知识图谱通常包括以下步骤: 1. 数据准备:收集相关文献和报告,对数据进行预处理(如分词、去除停用词等)。 2. 模型构建:结合BERT、BiLSTM和CRF构建实体识别模型,并对其进行训练。 3. 实体识别:利用训练好的模型从新文本中提取疾病、药物、症状等相关信息。 4. 关系抽取:进一步分析这些实体之间的关系,如疾病的症状或治疗的用药情况等。 5. 知识图谱构建:将上述提取出的信息组织成知识库的形式。 6. 应用服务:利用建立的知识图谱为医疗诊断支持、药物推荐及临床决策提供帮助。 通过这样的流程,我们可以创建一个强大的医学知识图谱,从而促进医疗健康行业的智能化发展。同时不断迭代和优化模型可以进一步提高知识图的质量与实用性。
  • BERT+CRF+BiLSTM生推荐系统问答
    优质
    本项目运用BERT、CRF和BiLSTM技术进行医疗领域命名实体识别,并建立医生推荐系统,集成医学知识图谱与智能问答功能。 领域知识图谱的医生推荐系统:通过使用BERT+CRF+BiLSTM进行医疗实体识别,构建医学知识图谱,并建立知识问答系统。
  • BERT-BiLSTM-CRF框架中文
    优质
    本研究采用BERT-BiLSTM-CRF模型进行中文实体识别,通过结合预训练语言模型与序列标注技术,有效提升了实体识别准确率和效率。 命名实体识别是自然语言处理中的关键技术之一。基于深度学习的方法已被广泛应用于中文实体识别的研究当中。然而,大多数深度学习模型的预处理主要关注词和字符特征的抽取,却忽视了词上下文语义信息的重要性,导致这些模型无法充分表征一词多义的现象。因此,目前的实体识别性能还有待进一步提升。 为了应对这一挑战,本段落提出了一种基于BERT-BiLSTM-CRF框架的研究方法。首先利用BERT模型生成包含丰富上下文信息的词向量;然后将得到的词向量输入到BiLSTM-CRF模型中进行训练处理。实验结果表明,在MSRA语料库和人民日报语料库上,该研究方法都取得了相当不错的效果,F1值分别达到了94.65%和95.67%,显示出了良好的性能表现。
  • BERT+BiLSTM+CRF中文命名
    优质
    本研究提出了一种结合BERT、BiLSTM和CRF模型的中文命名实体识别方法,有效提升了NER任务中的精度与召回率。 基于BERT+BiLSTM+CRF的中文命名实体识别(使用PyTorch实现)的基本环境为:Python 3.8、PyTorch 1.7.1 + cu110 和 pytorch-crf 0.7.2。
  • BERT+BiLSTM+CRF命名模型.zip
    优质
    本项目提供了一种基于BERT、BiLSTM和CRF技术结合的命名实体识别解决方案。利用预训练语言模型BERT提取文本特征,并通过双向长短期记忆网络(BiLSTM)进一步捕捉上下文信息,最后使用条件随机场(CRF)进行序列标注,有效提高了实体识别精度与效率。 基于Bert+BiLSTM+CRF的命名实体识别方法在自然语言处理领域得到了广泛应用。这种结合了预训练模型BERT、双向长短期记忆网络BiLSTM以及条件随机场CRF的技术框架,能够有效提升文本中命名实体(如人名、地名和组织机构名称等)的识别精度与效率。
  • Bert+BiLSTM+CRF命名数据集
    优质
    本数据集采用BERT、BiLSTM和CRF模型结合的方法进行训练,旨在提高实体命名识别任务中的准确性和效率。 对于这篇文章的数据集,大家可以自行下载使用。
  • BERT+BiLSTM+CRF命名模型.zip
    优质
    本资源提供了一个结合了BERT、BiLSTM和CRF技术的先进命名实体识别模型。通过深度学习方法提高对文本中特定实体(如人名、地名等)的准确识别能力,适用于自然语言处理中的多种场景应用。 基于Bert+BiLSTM+CRF的命名实体识别.zip包含了结合了BERT、双向长短期记忆网络(BiLSTM)和条件随机场(CRF)技术的模型,用于提高命名实体识别任务中的性能。该文件中详细介绍了如何利用这些先进的深度学习方法来改进自然语言处理领域内的特定问题解决能力。
  • PyTorchBERT-BiLSTM-CRF中文命名
    优质
    本研究利用PyTorch框架开发了一种结合BERT、BiLSTM和CRF模型的系统,专门针对中文文本进行高效的命名实体识别,提升了实体边界检测与分类精度。 依赖:python==3.6(可选)、pytorch==1.6.0(可选)、pytorch-crf==0.7.2、transformers==4.5.0、numpy==1.22.4、packaging==21.3 温馨提示:新增了转换为onnx并进行推理的功能,具体内容在convert_onnx下,使用命令python convert_onnx.py执行。仅支持对单条数据的推理。在CPU环境下,原本的推理时间为0.714256477355957秒,转换后为0.4593505859375秒。需要安装onnxruntime和onnx库。 注意:原本的pytorch-crf不能转换为onnx,在这里使用了替代方案。目前只测试了bert_crf模型,其他模型可根据需求自行调整。 问题汇总: ValueError: setting an array element with a sequence. The requested array has an inhomogeneous shape after 1 dimensions. 解决方法:pip install numpy==1.22.4 packaging.ver
  • BERTBiLSTMCRF中文景点命名
    优质
    本研究提出了一种结合BERT、BiLSTM和CRF模型的方法,专门针对中文景点文本进行命名实体识别,显著提升了实体识别的准确性和效率。 为了应对旅游文本在特征表示过程中遇到的一词多义问题,并解决旅游游记中的景点实体识别难题,特别是针对景点别名的问题,研究提出了一种结合语言模型的中文景点实体识别方法。该方法首先利用BERT语言模型提取文本中字级别的向量矩阵作为初始特征;然后采用BiLSTM来捕捉上下文信息;最后通过CRF(条件随机场)模型优化序列标注结果,从而准确地识别出旅游游记中的景点命名实体。实验结果显示,相较于现有研究的方法,该提出的模型在实际应用测试中表现出显著的性能提升,在准确率和召回率方面分别提高了8.33%和1.71%。
  • BERTBiLSTMCRF中文命名方法
    优质
    本研究提出了一种结合BERT、BiLSTM和CRF模型的中文命名实体识别方法,利用预训练语言模型提升特征表示能力,并通过序列标注技术实现高精度实体识别。 1. 目录结构 - data:训练数据集 - models:构建的模型 - result:存放结果文件 - ckpt:存放模型文件夹 - log:日志记录 - conlleval.py:计算模型性能脚本 - data_helper: 数据处理工具 - run.py: 程序执行入口 - train_val_test.py: 训练、验证和测试功能 - utils.py: 包含一些常用的功能函数 3. 运行说明 下载bert至项目路径,创建bert_model文件夹,并将预训练好的bert模型解压到该目录下。运行命令如下: ``` python3 run.py --mode xxx ``` 其中xxx为traintestdemo,默认值为demo。