Advertisement

shuangbihuancreativethreepulse.zip_voltage outer loop_电压外环_电压电流

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:ZIP


简介:
本资源包为“双臂环创意三脉冲”项目设计,专注于电压外环控制技术,探讨了电压与电流调节策略,适用于电力电子及自动化控制系统研究。 电压外环与电流内环组成的双闭环逆变电路以及三项双闭环逆变电路。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • shuangbihuancreativethreepulse.zip_voltage outer loop__
    优质
    本资源包为“双臂环创意三脉冲”项目设计,专注于电压外环控制技术,探讨了电压与电流调节策略,适用于电力电子及自动化控制系统研究。 电压外环与电流内环组成的双闭环逆变电路以及三项双闭环逆变电路。
  • 基于的Boost升
    优质
    本研究设计了一种采用电压外环与电流内环控制策略的Boost升压电路,优化了动态响应及稳态精度。 基于电压外环电流内环的Boost升压电路是一种常用的直流-直流转换器拓扑结构,通过采用双闭环控制策略来提高系统的动态响应性能和稳态精度。该方法在外环使用电压调节,在内环则进行电流调控,从而实现高效的电力传输与变换功能。
  • Buck双重闭
    优质
    Buck电压与电流双重闭环降压电路是一种高效的直流降压转换器设计,通过同时控制电压和电流确保稳定输出,并提高系统的动态响应和稳定性。 本控制系统采用电压与电流双闭环控制策略:电压环使用PI(比例积分)控制器,电流环同样应用了PI控制技术。当设定的输入电压发生变化时,该算法能够确保输出电压迅速稳定地跟踪到新的给定值。此外,此算法设计简洁明了,并且可以通过单片机、ARM处理器、DSP芯片、FPGA或CPLD等硬件平台轻松编程实现,有助于提升个人的实际操作技能和动手能力。整个系统的各个模块功能划分清晰明确,易于理解和掌握。
  • 【Simulink仿真】Buck路的双闭控制(内
    优质
    本项目利用MATLAB Simulink搭建了Buck电路的双闭环控制系统模型,分别设计了内环电流和外环电压控制器,实现了高效稳定的电力转换。 在Simulink中仿真的双闭环buck电路中外环控制输出电压,内环控制输出电流。参数已经调好了。
  • 基于STM32的三相型SVPWM整器仿真研究:采用双闭PID控制(),输出达600V
    优质
    本研究利用STM32平台探讨了三相电压型SVPWM整流器,通过实施双闭环PID控制系统(包括电压外部回路和电流内部回路)实现了高达600伏的稳定输出电压。 在现代电力电子技术领域,三相电压型SVPWM(空间矢量脉宽调制)整流器已成为关键组件之一,在高电压大功率应用中具有广泛应用前景。STM32是一种广泛使用的32位微控制器,具备丰富的外设接口和强大的处理性能,非常适合实现复杂的控制算法。 本段落将详细介绍基于STM32控制器的三相电压型SVPWM整流器仿真设计,并采用双闭环PID控制策略来确保输出电压稳定在600V或800V。此外,该系统还具备单位功率因数运行能力及变负载仿真实验功能。 空间矢量脉宽调制技术是三相电压型SVPWM整流器的核心所在,通过调整脉冲宽度和优化开关频率来减少谐波、提高效率并加快响应速度。在本次仿真中,采用精确的SVPWM控制策略对输出电压与电流进行精细调节。 双闭环PID控制系统是此次仿真实验的关键部分,在该系统中,电压外环负责维持稳定的输出电压,而电流内环则通过调整PWM信号来保证电压环的精度和稳定性。这种分层控制方式不仅提高了系统的动态性能,还确保了在负载变化时仍能保持良好的稳定性和响应能力。 仿真设计过程中,STM32控制器利用其丰富的接口与SVPWM整流电路连接,并通过内部PID算法调节PWM占空比以实现实时控制。此外,系统支持用户自定义输出电压至800V,满足不同应用场景的需求。 报告还详细介绍了三相全控单极性桥式整流电路的设计及仿真过程。该设计采用六个可控硅作为开关器件,并通过软件精确调控其通断状态来完成整流功能。与传统二极管整流相比,这种可控硅整流方案具有更好的可调节性和更佳的电力参数控制能力。 在仿真实验中,我们深入分析并验证了电压外环和电流内环PID参数的有效性,并通过实验数据展示了双闭环控制系统的优势。此外,还探讨了随着技术进步如何优化三相电压型SVPWM整流器的设计以适应新的应用需求。 本段落包含多个仿真波形图来直观展示系统在不同条件下的性能表现,帮助理解系统的动态响应特性和稳定状态特性。通过这些研究成果,我们为开发高性能电力电子设备提供了重要的参考依据和实践经验。
  • AC_DC_SPWM.rar_双闭控制_调节_整器SPWM_程序
    优质
    本资源包含AC-DC SPWM控制策略下的双闭环控制系统设计文档和代码,涵盖电压与电流调节算法、整流器的SPWM生成方法及电压闭环整流程序。 在电力电子领域,AC-DC整流器是电力转换系统中的关键组成部分,它将交流电(AC)转换为直流电(DC)。本压缩包“AC_DC SPWM.rar”包含了一个针对这种转换器的双闭环控制策略,即电压外环和电流内环的设计以及相关的程序代码,用于实现SPWM(脉宽调制)控制的整流器。 **电压外环**是控制系统的顶层,其目标是保持直流侧输出电压的稳定。在这个环路中,实际的输出电压与设定的参考电压进行比较,误差信号通过PI(比例积分)控制器处理后生成调整信号。这个信号作为电流环的参考输入,确保整流器在电网电压波动或负载变化的情况下仍能维持恒定直流输出电压。 **电流内环**则是控制系统的底层,负责精确地控制流入逆变器的交流电流。在这个环路中,实际的电流值与参考电流值进行比较后产生的误差信号通过PI控制器处理生成PWM调制信号。SPWM技术通过对逆变器开关器件的频率和占空比调节,使得交流电流尽可能接近期望波形,从而减少谐波并提高功率因数。 **SPWM技术**(Sine Pulse Width Modulation)是一种广泛应用的脉宽调制方法,它通过改变脉冲宽度来模拟正弦波形。此技术的优点包括效率高、波形质量好,并能有效降低电磁干扰(EMI)。 **双闭环控制**结合了电压和电流两个环路,提高了系统的动态响应和稳定性。电压环负责快速应对大的电压变化,而电流环则确保精确的电流控制以防止过流或欠流情况的发生。这种设计使得系统在各种工况下都能稳定运行,并具备良好的动态性能。 文件“AC_DC SPWM”可能包含了实现这些功能的C语言或MATLAB程序代码,包括PI控制器参数设置、PWM生成算法和采样比较逻辑等关键部分。通过分析理解这些代码,工程师可以更好地掌握双闭环SPWM整流器的工作原理并根据具体应用需求进行优化。 在实际应用中,这种控制策略广泛应用于工业电源、电动汽车充电站以及光伏逆变系统等领域,确保了高效可靠的电力转换。对于学习电力电子或从事相关工作的人员来说,理解和实施这类控制算法具有很高的价值。
  • MATLAB 2016A 中的 Simulink 仿真:子双闭 Buck 降路(
    优质
    本教程详细介绍如何在MATLAB 2016A的Simulink环境中搭建并仿真一个具有电压与电流双重反馈控制机制的Buck降压电路模型。 在MATLAB 2016a的Simulink环境中进行电力电子双闭环Buck降压电路仿真,包括电压环和电流环的设计。如果有疑问可以加入交流群进一步讨论。
  • T型三平逆变器:、SPWM及锁相技术
    优质
    本研究聚焦于T型三电平逆变器系统,深入探讨其电压与电流双闭环控制策略,详述正弦脉宽调制(SPWM)技术和锁相环(PLL)机制的应用与优化。 T型三电平逆变器采用电压外环控制、电流内环调节,并结合SPWM技术和锁相环技术。
  • MM.Zip_在逆变器中的应用研究
    优质
    本论文探讨了电压外环与电流内环控制策略在逆变器中的应用,分析其工作原理及优势,为电力电子系统的高效稳定运行提供了理论支持。 关于逆变器电压外环电流内环的MATLAB仿真,希望这段内容对初学者有所帮助。
  • Boost.Zip Boost 双控制_DDCD_C_调节_输出控制
    优质
    本项目聚焦于Boost.Zip双环控制系统中的电压外环调节技术,采用数字直流变换器(DDCD)实现对输出电压的有效控制。通过精确调整电压外环参数,优化系统动态响应和稳态精度,确保高效稳定的电力转换性能。 DC-DC变换器采用双闭环控制策略:电压外环使用PI控制器来调节输出电压,电流内环则利用PI控制器加速响应速度。