Advertisement

基于ARM Linux的图像采集与蓝牙传输在嵌入式系统/ARM技术中的应用

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本项目探讨了在基于ARM架构和Linux操作系统的嵌入式平台中,实现图像采集及蓝牙无线传输的技术方案及其应用。 嵌入式Linux系统具备良好的可移植性、强大的网络功能、优秀的GNU编译工具及免费的开放源代码等特点。S3C2410处理器是一款采用ARM920T架构,内部资源丰富的32位嵌入式处理器。USB摄像头因其价格低廉和性能良好而受到青睐,在Linux系统中借助V4L支持进行编程也十分便捷,易于集成到各种嵌入式应用之中。蓝牙技术作为一种被广泛认可的短距离无线通信方案,已应用于手机、电脑及汽车免提设备等多种场景。 本段落将详细介绍基于嵌入式Linux系统的USB图像采集解决方案,并通过构建在该系统内的蓝牙环境,实现将所采集图片传输至蓝牙手机的功能,从而达成监控目的。 1. 软硬件平台概述 本项目采用的硬件架构如图1所示。软件层面则选用嵌入式Linux作为开发基础。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • ARM Linux/ARM
    优质
    本项目探讨了在基于ARM架构和Linux操作系统的嵌入式平台中,实现图像采集及蓝牙无线传输的技术方案及其应用。 嵌入式Linux系统具备良好的可移植性、强大的网络功能、优秀的GNU编译工具及免费的开放源代码等特点。S3C2410处理器是一款采用ARM920T架构,内部资源丰富的32位嵌入式处理器。USB摄像头因其价格低廉和性能良好而受到青睐,在Linux系统中借助V4L支持进行编程也十分便捷,易于集成到各种嵌入式应用之中。蓝牙技术作为一种被广泛认可的短距离无线通信方案,已应用于手机、电脑及汽车免提设备等多种场景。 本段落将详细介绍基于嵌入式Linux系统的USB图像采集解决方案,并通过构建在该系统内的蓝牙环境,实现将所采集图片传输至蓝牙手机的功能,从而达成监控目的。 1. 软硬件平台概述 本项目采用的硬件架构如图1所示。软件层面则选用嵌入式Linux作为开发基础。
  • Linux视频/ARM
    优质
    本项目探讨了在嵌入式Linux环境下,通过ARM平台实现视频图像的有效采集、压缩及无线传输的技术方案及其实际应用。 视频图像采集及处理技术在远程监控与可视通话中有广阔的应用前景。驱动视频设备并获取、处理视频数据是实现这些应用的基础。为此,我们基于嵌入式Linux系统和PXA270微处理器设计了一个集视频采集与传输于一体的系统。该系统利用Video4Linux协议从USB摄像头中捕获视频数据,并通过JPEG压缩技术进行优化,在PXA270的控制下经由以太网实现数据传输,同时我们重新编译移植了Webcam_server程序来支持实时视频流获取。实验结果显示,此系统具有良好的动态更新性能和实用性。
  • 信息/ARM设计
    优质
    本项目专注于开发一种集成化的嵌入式图像信息采集和传输系统,旨在利用先进的ARM技术优化数据处理效率,实现高效、稳定的图像信息实时传输。 本段落设计并实现了一种基于ARM9核心的嵌入式系统家庭安防方案,并配备了MC35I无线通信模块、红外传感器模块以及CMOS摄像头OV9650模块,形成了完整的硬件电路结构。 1. 引言 长久以来,家庭安全问题一直困扰着人们。随着“智能家居”的兴起和发展,这些问题得到了一定程度的解决并提升了居民的生活质量。然而,“智能家居”高昂的成本让许多普通消费者望而却步。为此,本段落提出了一种简单且经济的家庭安防系统方案以满足大众的需求。 2. 系统硬件电路设计 如图1所示,该系统的硬件部分由嵌入式核心板及其外围设备组成。这些组件协同工作来完成家庭安全监控的功能需求。
  • ARM开发
    优质
    本项目旨在开发一个集图像采集与蓝牙无线传输于一体的系统,采用ARM架构硬件平台,实现高效、便携的数据处理和远程通信功能。 本段落介绍了一种基于嵌入式Linux的USB图像采集系统,并通过构建好的蓝牙环境将采集到的图片传输至蓝牙手机上,从而实现监控功能。
  • S3C2410ARM
    优质
    本项目探讨了在基于S3C2410处理器的嵌入式系统中,利用ARM架构实现高效的图像采集与处理方法。通过优化硬件接口和软件算法,该系统能够快速、稳定地捕获高质量图像数据,适用于监控、医疗成像等多种应用场景。 引言 嵌入式监控系统作为安全防范技术体系的重要组成部分,在图像采集与存储功能方面发挥着关键作用。随着微电子技术和软件技术的不断进步,嵌入式技术也取得了显著的发展。基于此,结合了嵌入式技术的图像数据采集和存储监控系统由于其直观性、便捷性和信息量丰富的特点而被广泛应用于各种场合。 这类监控系统的运行环境具有特定的要求,并且需要具备独特的结构特性。因此,这对监控系统的软硬件平台提出了较高的需求标准。随着处理器性能提升及接口传输能力增强,特别是未来大容量存储器的应用普及,图像监控系统的小型化和多功能化的实现变得更加容易。当嵌入式技术被引入到这类系统中后,则必须解决两个关键问题:一是能够灵活调整的监控结构设计;二是制定符合标准规范、涵盖图像与信号检测及控制功能在内的综合解决方案。
  • ARM及无线设计-论文
    优质
    本文提出了一种基于ARM嵌入式的图像采集与无线传输系统设计方案。通过优化硬件配置和软件算法,实现了高效稳定的图像数据采集以及低延迟的数据传输功能,为远程监控、医疗诊断等场景提供了可靠的技术支持。 基于ARM嵌入式的图像采集与无线传输系统设计涉及利用ARM架构的硬件平台实现高效的图像数据捕获,并通过无线通信技术将这些数据进行远程传输。该系统的开发旨在为需要实时监控或快速响应的应用场景提供技术支持,例如智能安防、环境监测等领域。
  • ARMLCD显示/ARM设计
    优质
    本项目探讨了在嵌入式ARM平台上开发LCD图像显示系统的实现方法和技术细节,旨在优化资源利用和提升用户体验。 0 引言 随着嵌入式技术的迅速发展以及Linux在信息行业的广泛应用,利用嵌入式Linux系统进行图像采集处理已成为可能。实时获取图像数据是实现这些应用的关键环节之一。本段落采用Samsung公司的S3C2410处理器作为硬件平台,并在此基础上,在基于嵌入式Linux系统的平台上设计了一种建立图像视频的方法。 1 系统硬件电路设计 S3C2410芯片内置了ARM公司ARM920T处理器核心的32位微控制器,具有丰富的资源,包括独立的16 kB指令缓存和数据缓存、LCD(液晶显示器)控制器、RAM控制器、NAND闪存控制器以及三路UART接口和四路DMA通道。
  • LinuxARMRFID信息处理研究
    优质
    本研究探讨了在RFID系统中采用基于嵌入式Linux的ARM技术进行信息采集和处理的方法及优势,旨在提升系统的稳定性和效率。 射频识别(RFID)是一种非接触式的自动识别技术,通过射频信号自动识别目标对象并获取相关数据,在此过程中无需人工干预,并且能够在各种恶劣环境中正常工作。RFID 技术已广泛应用于多个领域,例如停车场管理和集装箱运输管理系统等。在许多应用中,只需要固定的阅读器即可满足需求;然而,在某些特殊系统(如集装箱运输管理)中,则不仅需要固定式读卡器,还需配备手持式设备。 TagMaster AB 是一家全球知名的RFID 读写器制造商,该公司提供性能卓越的固定式和便携式两种类型的阅读器。其中的手持装置是由另一家公司Caiso生产的工业级个人数字助理(PDA)与Tag结合而成的产品。
  • /ARMLinuxQT标准键盘实现
    优质
    本文探讨了在嵌入式系统及ARM架构下,基于嵌入式Linux环境开发和集成Qt框架的标准键盘输入方法,旨在优化用户界面交互体验。 作者:刘洪涛, 华清远见嵌入式学院讲师。 在嵌入式平台上运行QTE时,使用的键盘通常不是标准键盘,而是设备外扩的普通按键。实现QTE键盘输入的方法大体上可以分为两类: (1)编写一个普通的按键驱动程序,并开辟一个QT线程来读取按键值,再通过信号将这些键值发送出去。需要接收键盘输入的目标组件应声明槽函数以接收相应的信号。 (2)把普通按键的驱动程序改写成标准键盘驱动程序,使QTE能够像处理标准键盘一样对待它们。 上述两种方法各有特点,在一些项目中我多数使用第一种方式,感觉这种方法较为直观且容易控制。但在某些情况下,则需要选择第二种方法来实现目标功能。 第一种方法相对简单易行,这里不再赘述;下面主要描述第二种方法的实现过程。
  • FPGAARM
    优质
    本项目开发了一种结合FPGA和ARM技术的高效图像采集及传输系统,旨在实现快速、高质量的数据处理与实时通讯。 基于FPGA(现场可编程门阵列)与ARM(高级精简指令集机器)微处理器的图像采集传输系统是一种先进的图像处理解决方案。这种结合利用了FPGA在高速并行运算以及定制化设计上的优势,同时借助ARM灵活性强和丰富的指令集来满足嵌入式系统的应用需求。这样的架构能够支持复杂的图像算法处理,并确保实时性和高效性,在农业自动化、医疗成像及工业检测等领域有着广泛的应用。 本系统中使用的CMOS(互补金属氧化物半导体)图像传感器是OV9650彩色版本,它兼容多种视频格式并具备自动曝光、增益控制和白平衡等特性。通过SCCB接口进行配置后,该传感器输出原始的Bayer数据给FPGA处理模块。 在系统中,FPGA负责管理CMOS传感器的工作流程,并处理接收到的数据。这里使用的是Xilinx公司的Spartan-3系列XC3S1000型号,拥有丰富的逻辑门单元和80MHz的操作频率。其内部包括多个组件:如控制CMOS的帧同步、场同步及像素时钟模块等。 ARM处理器在这个系统中主要负责图像数据交换、以太网芯片操作以及UDPIP协议实现等功能。我们选用Intel公司的Xscale PXA255作为微处理器,它是一个32位嵌入式RISC架构,适合高速的数据处理和网络通信任务。此外,SDRAM用于存储图像信息而NOR FLASH则保存程序代码。 系统中还配置了以太网传输模块来实现远程数据传送功能,并采用SMSC公司的LAN91C113芯片支持快速以太网连接(包括MAC与PHY)并符合相关标准要求。 该系统的结构设计对整体性能至关重要。其框图展示了各个组件间的交互关系:图像传感器负责采集原始信息,FPGA控制CMOS传感器并将数据缓存到双口SRAM中;ARM处理器从FPGA的存储器读取这些资料,并将其转移到SDRAM里进行进一步处理或传输给上位机。 这种结合了ARM灵活性和FPGA并行处理能力的设计方案实现了图像采集与传输的速度优化。在农业自动化等实时性要求高的场景下,该系统能够显著提高作业效率及精度水平,在未来具备广阔的应用前景。不过,在实际应用中还需考虑诸如分辨率、帧率、数据带宽需求以及设备能耗和稳定性等方面的问题,并针对农业生产环境的特殊条件进行适应性和抗干扰性的优化设计。