Advertisement

关于遗传规划算法在车间调度问题中的应用研究

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究探讨了遗传规划算法应用于车间调度问题的有效性与优势,通过模拟生物进化过程优化生产流程,旨在提升制造业效率和降低成本。 在机器学习领域内,遗传规划(Genetic Programming, GP)是一种基于可变长度树形结构的仿生进化算法,能够将调度规则通过树形结构表示并进行遗传操作。这为计算机自动生成和优化启发式算法提供了可能——即超启发式算法(Hyper Heuristic)。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究探讨了遗传规划算法应用于车间调度问题的有效性与优势,通过模拟生物进化过程优化生产流程,旨在提升制造业效率和降低成本。 在机器学习领域内,遗传规划(Genetic Programming, GP)是一种基于可变长度树形结构的仿生进化算法,能够将调度规则通过树形结构表示并进行遗传操作。这为计算机自动生成和优化启发式算法提供了可能——即超启发式算法(Hyper Heuristic)。
  • 优质
    本研究探讨了运用遗传算法解决复杂制造系统中的车间调度问题,旨在提高生产效率和资源利用率。通过模拟自然选择与遗传机制,优化任务分配与流程安排,实现成本最小化及时间最省目标。 智能车间调度问题可以通过遗传算法得到更有效的解决方案。
  • -jobshopmatlab.rar
    优质
    本资源为针对车间调度问题开发的一种基于遗传算法的解决方案,旨在优化Job Shop环境下的生产效率。通过MATLAB实现,提供了一个有效的工具用于测试和比较不同的调度策略。 车间调度遗传算法的研究涉及使用MATLAB进行一系列操作来优化生产过程中的任务分配与时间安排。 1. 参数初始化:设置群体数量为60个个体,并设定500次迭代周期,交叉概率设为0.8,变异概率定于0.6,同时代沟比例被指定为0.9。 2. 群体初始化:采用优先级编码方式生成初始种群。例如,在处理三个零件且每个零件包含三个工序的情况下,可能的初始序列包括1、3、4、5、6、7、8、9和2;或者2、1、3等排列组合形式。 3. 适应值计算:将个体解码为具体的操作顺序,并根据该操作顺序计算完成所有任务所需的总时间作为其适应度评价标准。 4. 自然选择过程:按照轮盘赌原则从原种群中挑选出60*0.9(即54个)具有较高适配性的新成员,以构成下一代群体的主体部分。 5. 交叉操作:在选定的新族群内随机选取两个尚未被选中的个体进行遗传信息交换。具体而言,在设定的概率阈值之上执行两点式基因重组策略;例如对于序列1、2、3、5、6、7、8和4,9,若选择的断点位于位置2与5之间,则可能产生新的组合如:0、2、3(被切除)、5(保留)等。 6. 突变操作:对经过交叉后的新生代群体中的每一个体施加突变处理。通过随机生成数值来决定是否执行基因位的交换,若概率大于预设值,则在个体内部选择两个位置并互换其内容以引入新的变异形式。 7. 种群更新策略:最终保留6个适应度较高的原有成员不变,并用经过上述操作后产生的新种群替换其余部分。
  • -jobshopmatlab.rar
    优质
    本资源提供了针对车间调度问题的遗传算法解决方案,并以MATLAB代码形式实现。主要应用于解决Job-Shop调度问题,通过优化算法提高生产效率与灵活性。 车间调度遗传算法的研究 1. 参数初始化:族群数量设定为60个个体;迭代次数设为500次;交叉概率设置为0.8;变异概率设为0.6;代沟比例定为0.9。 2. 群体初始化:采用基于调度优先级的编码方式。例如,对于包含三个零件且每个零件有三个工序的情况,可以进行如下形式的初始编码:“1、3、4、5、6、7、8、9、2”或“2、1、3、4、5、6、7、8、9”。 3. 计算适应度:将个体解码为具体的工序序列,并计算完成时间以评估其适应值。 4. 选择操作:从原族群中,按照轮盘法选取60*0.9(即代沟)=54个个体组成新族群。 5. 交叉过程:在选出的新族群内进行遗传算法中的交叉操作。具体而言,在随机挑选的两个未被选过的个体之间执行2点交叉。例如,“1、2、3、5、6、7、8、4、9”和“2、1、3、5、6、4、9、7、8”,若选择在位置2和位置5进行交叉,则生成的中间状态为:“0, 2, 3, 5, 6, 0, 0, 0”。之后,删除这些占位符并插入未被交换的部分以完成新个体。 6. 变异操作:针对通过交叉得到的新族群中的每个个体执行变异。具体来说,若随机生成的数大于设定的变异概率,则在该个体中选择两个不同的位置,并将这两个位置上的数据进行互换。 7. 代群更新:新的群体包含54个经过交叉和/或变异操作后的个体。同时保留来自原族群适应值较高的6个个体以确保种群多样性,其余30%的个体被新产生的后代所替代。
  • 动态-张富生
    优质
    本文由作者张富生撰写,专注于探讨和分析遗传算法如何有效应用于解决车间生产过程中的动态调度问题,旨在提高制造业运营效率。 作业车间调度对制造业的生产效率有重要影响。研究并应用有效的调度方法与优化技术对于提升制造企业的生产力、降低成本等方面至关重要,因此越来越受到学者们的关注。本段落分析了作业车间调度的需求,并在静态遗传算法的基础上进行了深入探讨,结合滚动窗口技术进一步研究了基于遗传算法的动态调度策略应用于作业车间的可能性。
  • 改进有时论文.pdf
    优质
    本文探讨了遗传算法在解决具有时间窗口约束的车辆路径规划问题上的优化与改进策略,旨在提高物流配送效率。 本段落基于对带有时间窗的车辆调度问题进行分析后,建立了一个相应的数学模型,并为不同时间段设计了惩罚函数。我们还开发了一种针对该类问题的遗传算法,采用了自然数编码的方式并改进了传统的交叉运算方法以保护优秀基因在操作过程中的完整性,从而增强了算法优化搜索的能力。最后通过具体案例进行了仿真计算,探讨了载重体积限制和时间窗口约束对车辆调度的影响,并验证了所提出算法的有效性。
  • 作业改进自适论文.pdf
    优质
    本论文探讨了针对作业车间调度问题的一种改进型自适应遗传算法。通过优化遗传操作和引入动态参数调整策略,有效提升了算法求解效率与质量,为复杂调度场景提供了一种新的解决方案。 本段落提出了一种改进的自适应遗传算法来求解作业车间调度问题。该方法在保留当前代中的最优个体的同时,引入了交叉与变异的概率机制。通过开发相应的工程应用软件包,显著提升了算法的收敛速度,并且能够在搜索过程中自动调整交叉概率和变异概率,更好地满足实际工程需求。
  • 与进化公交.zip
    优质
    本研究探讨了遗传算法和进化算法在优化公交调度系统中的应用,通过仿真试验验证其有效性和优越性,为公共交通系统的高效运作提供解决方案。 公交车调度问题属于NP难题,本代码利用遗传算法来智能规划公交车的调度。
  • MATLAB
    优质
    本研究利用MATLAB平台开发了遗传算法工具箱,并将其应用于解决复杂的车间生产调度问题,以优化生产效率和资源利用率。 使用MATLAB中的遗传算法(GA)进行车间调度的代码示例可供参考学习。
  • 动态作业综述论文
    优质
    本文综述了针对动态车间作业调度问题中的调度规则算法研究进展,分析现有方法的优势与局限,并探讨未来研究方向。 调度规则是解决实际生产环境中动态车间作业调度问题的有效手段之一,但其性能通常仅在特定的调度环境下表现出色;当环境发生变化时,则需要进行实时的选择与评估。本段落对用于选择及评价调度规则的方法进行了综述,并探讨了如何应对实际生产中出现的动态车间实时调度挑战。 文章首先概述了调度规则的发展历程、分类及其主要特点,随后总结了几种常用的调度规则选取策略和评价方法。其中重点介绍了稳态仿真法与人工智能技术(如专家系统、机器学习及人工神经网络)在这一领域的应用成果,并列举了一些研究结论。此外,还详细描述了用于评估不同调度规则性能的指标体系及其具体实施方式。 针对现有研究中存在的不足之处,文章最后提出了未来可能的研究方向和改进思路。