Advertisement

利用基于学习的超分辨率技术提升Landsat TM/ETM+空间分辨率并与SPOT5图像融合

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:None


简介:
本研究采用基于深度学习的超分辨率方法提高Landsat TM/ETM+影像的空间分辨率,并将其与SPOT5数据进行高效融合,旨在生成高质量、高精度的卫星影像,以满足遥感应用中对细节和覆盖范围的需求。 为了充分利用Landsat专题地图(TM)/增强型专题地图(ETM+)图像的宽幅宽度以及Systeme Pour lObservation de la Terre 5 (SPOT5) 图像的高空间分辨率,我们提出了一种基于超分辨率的学习方法来融合这两种数据类型。预期生成的融合图像将具有TM / ETM+图像的扫描带宽和SPOT5图像的空间分辨率。 为此,首先通过模糊和下采样操作建立一个降级模型,以模拟从SPOT 图像到 TM/ETM + 图像在对应波段上的成像过程。利用此降级模型,可以从每个 SPOT5 图像生成一个仿真的Landsat图像,从而避免了两个输入图像的几何配准需求。 接下来,在两个阶段中逐个波段地实现图像融合:1)从给定的SPOT5和模拟的TM / ETM+图象中学习代表高分辨率和低分辨率细节的一对字典;2)基于该字典对以及稀疏编码算法,将输入的Landsat 图像进行超分辨处理。 值得注意的是,所提出的方法还可以通过使用学到的字典对来进行 TM/ETM + 和 SPOT5 图像的标准空间与频谱融合。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • Landsat TM/ETM+SPOT5
    优质
    本研究采用基于深度学习的超分辨率方法提高Landsat TM/ETM+影像的空间分辨率,并将其与SPOT5数据进行高效融合,旨在生成高质量、高精度的卫星影像,以满足遥感应用中对细节和覆盖范围的需求。 为了充分利用Landsat专题地图(TM)/增强型专题地图(ETM+)图像的宽幅宽度以及Systeme Pour lObservation de la Terre 5 (SPOT5) 图像的高空间分辨率,我们提出了一种基于超分辨率的学习方法来融合这两种数据类型。预期生成的融合图像将具有TM / ETM+图像的扫描带宽和SPOT5图像的空间分辨率。 为此,首先通过模糊和下采样操作建立一个降级模型,以模拟从SPOT 图像到 TM/ETM + 图像在对应波段上的成像过程。利用此降级模型,可以从每个 SPOT5 图像生成一个仿真的Landsat图像,从而避免了两个输入图像的几何配准需求。 接下来,在两个阶段中逐个波段地实现图像融合:1)从给定的SPOT5和模拟的TM / ETM+图象中学习代表高分辨率和低分辨率细节的一对字典;2)基于该字典对以及稀疏编码算法,将输入的Landsat 图像进行超分辨处理。 值得注意的是,所提出的方法还可以通过使用学到的字典对来进行 TM/ETM + 和 SPOT5 图像的标准空间与频谱融合。
  • _Python__重建恢复
    优质
    本项目利用Python实现图像超分辨率技术,旨在通过算法增强图像细节和清晰度,进行高效的图像重建与超分辨率恢复。 基于深度学习的图像超分辨率重建流程如下:首先获取一组原始图像Image1;然后将这些图片降低分辨率生成另一组图像Image2;接着利用各种神经网络结构将Image2恢复为高分辨率的Image3,使其与Image1具有相同的分辨率;再通过PSNR等方法比较Image1和Image3的效果,并根据效果调整神经网络中的节点和参数;最后重复以上步骤直至结果满意。
  • (RGBHSIGUI-MATLAB实现)
    优质
    本项目利用MATLAB开发图形用户界面(GUI),实现RGB彩色图像与HSI图像的空间分辨率增强融合技术,通过优化算法提高图像清晰度和细节表现。 使用RGB到HSI转换的高分辨率图像来提升低分辨率图像的GUI工具。首先需要将空间上共同配准后的单色(灰度)低分辨率图像通过伪彩色映射到“热”色彩方案,使其成为彩色图像。接着把此生成的RGB图转变为色调、饱和度和亮度(HSV)格式。在此过程中,HSV中的亮度部分会被更高分辨率的图像替换掉,并且最终转换回RGB格式。这样就实现了灰度低分辨率图像与高分辨率全彩图像的空间分辨率提升合并。 要运行该工具,请在MATLAB命令窗口中输入:>>解析合并 此方法适用于任何类型的彩色或单色图像,如果图像是彩色的话,则首先会被转换为灰度形式再进行处理。使用时需要从matlab文件加载变量LOWRES和HIGHRES以供程序读取并操作。
  • 多光谱遥感
    优质
    本研究聚焦于提升遥感图像质量,采用先进的多光谱图像超分辨率技术进行图像融合,以实现高空间分辨率与高光谱信息的完美结合。 传统遥感图像融合方法未能充分利用低分辨率多光谱图像的空间细节信息。为此,本段落提出了一种基于超分辨率处理的遥感图像融合技术,旨在提升低分辨率多光谱图像的空间质量同时保留其光谱特性。具体而言,通过稀疏表示的方法对原始低分辨多光谱影像进行增强处理;然后利用小波变换将亮度分量Y从经过超分辨率处理后的多光谱图与全色图像相融合;最后通过逆向的YUV转换获得最终的融合结果。 实验在真实遥感数据上验证了该方法的有效性,显示其能够显著提高融合后影像的空间细节表现力,并且不会影响到原始的光谱特征。对比分析进一步证实了所提方案的优势所在。
  • Python.zip
    优质
    本项目为一个利用Python实现的图像超分辨率解决方案,通过深度学习模型将低分辨率图片转换为高分辨率版本。代码和详细文档可供研究者参考使用。 本实验所需的资源包括设计报告的Word文档以及项目源码。开发过程中使用了“Microsoft Visual Studio”、“VS Tools for AI”等组件,并涉及到了“TensorFlow”、“NumPy”、“scipy.misc”、“PIL.image”等多个框架和库,其中,“scipy.misc”与“PIL.image”用于图像处理功能。“NVIDIA GPU”的驱动程序、CUDA以及cuDNN也是本实验的重要组成部分。详细的环境配置方法可以在“VS Tools for AI”的官方文档中找到。 在完成上述准备工作后,请打开“Microsoft Visual Studio”,这里我们使用的是2017版本的软件。接下来,点击菜单栏中的“文件”、“新建”、“项目”。然后,在弹出窗口的左侧列表中选择“AI工具”,并从中挑选“通用Python应用程序”选项进行创建。将新项目的名称设置为“image-super-resolution”,完成以上步骤后,单击确认按钮以建立项目。 最后,请双击刚刚生成的文件 “image-super-resolution.sln” 来进入开发环境开始实验工作。
  • 重建
    优质
    超高分辨率图像重建技术是一种通过先进的算法和数学模型将低分辨率或模糊图像转化为高清晰度图像的技术。这项技术能够显著提高图像质量,在医学影像、卫星遥感以及数字摄影等领域有着广泛的应用前景,极大地提升了细节识别能力和视觉体验。 超分辨率图像重建是一种数字图像处理技术,旨在通过增强低分辨率(LR)图像的细节和清晰度来生成高分辨率(HR)图像。这项技术在视频监控、医学成像、遥感以及多媒体内容增强等领域有着广泛应用。 在这个场景中,我们有一个与超分辨率相关的MATLAB代码库可以直接运行。SuperresCode.m可能是一个主函数或核心算法实现文件,它包含了超分辨率重建的关键步骤:图像预处理、特征提取、上采样和反卷积等操作。这些是超分辨率重建过程中的常见步骤。 Test.m可能是用于调用SuperresCode.m并验证其效果的测试脚本。Butterfly.bmp可能是一个低分辨率的测试图像,用来展示算法的结果。 MatlabR2007aSupResModel.mat文件中存储了预先训练好的模型或算法参数。在超分辨率领域,这样的模型通常是通过学习过程来预测HR图像像素值而得到的。MATLAB的.mat文件可以保存变量、函数等数据结构,便于交换和持久化结果。 SuperresCodeMex.mexa64, .mexglx, 和 .mexw32是编译后的C或C++代码文件,用于提高MATLAB程序运行速度。这些MEX文件对应于不同操作系统平台(例如64位、Linux、Windows),表明部分关键计算密集型操作可能以其他语言编写。 Usage.txt提供了关于如何使用这个代码库的说明,包括测试方法、输入参数的意义以及预期输出等信息。用户应仔细阅读此文档来正确利用这些MATLAB代码执行超分辨率图像重建任务。 在实际应用中,超分辨率图像重建通常涉及以下技术: 1. **基础图像估计**:通过对多帧低分辨率图像进行融合或对单帧的多次上采样和插值处理以获取更丰富的细节信息。 2. **图像恢复**:使用逆滤波或其他复杂的技术(如Wiener滤波)来消除模糊,提高重建质量。 3. **学习方法**:通过训练深度卷积神经网络模型让其学会低分辨率到高分辨率的映射关系。 4. **先验知识利用**:借助于图像局部相似性、边缘信息和纹理结构等先验知识帮助恢复丢失或不清晰的部分。 这个MATLAB代码集合为实现超分辨率技术提供了一个完整的工具包,用户可以通过运行和修改这些文件来学习并实践提高图像质量和清晰度的方法。
  • POCS__重构_
    优质
    本研究聚焦于POCS算法在图像超分辨率领域的应用,探讨如何通过重构技术提升图像细节和清晰度,实现高质量的超分辨率图像生成。 使用POCS方法对图像进行超分辨率重构的Matlab源码及解释。
  • AI自动片至高
    优质
    本项目专注于开发能够将低分辨率图像智能升级为高分辨率图像的人工智能技术,显著提高视觉清晰度和细节表现。 导入低分辨率图片后,可以设置导出的放大倍数。图片在放大过程中会自动进行补图处理,效果非常出色。
  • Python-深度实现(ImageSuperResolution)
    优质
    本项目运用Python结合深度学习技术,致力于提升图像质量,通过构建神经网络模型实现图像超分辨率处理,显著增强低分辨率图片细节。 图像超分辨率(Image Super-Resolution)是深度学习领域的一个重要研究方向,其核心目标是从低分辨率的输入图像生成高质量、高清晰度的输出图像。通过利用卷积神经网络等技术手段,可以有效地恢复丢失的信息并增强细节表现力,在实际应用中广泛用于视频监控、医学影像处理和数字艺术修复等多个场景。 这种方法不仅能够改善视觉体验还为许多需要精细图像数据的应用提供了强有力的技术支持。近年来随着深度学习模型的不断进步以及计算资源的发展,图像超分辨率技术取得了显著的进步,并且在多个基准测试任务上达到了令人瞩目的性能水平。
  • RankSRGAN-PyTorch
    优质
    RankSRGAN是一款基于PyTorch开发的深度学习框架下的图像超分辨率工具包,它通过先进的RankSRGAN算法显著提升图像质量与细节表现。 该资源提供RankSRGAN-图像超分辨率的PyTorch版本代码,复现论文为《RankSRGAN: Generative Adversarial Networks with Ranker for Image Super-Resolution》。