Advertisement

空气环境中激光引发的等离子体激波演变机制

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本研究聚焦于空气中由激光激发产生的等离子体及其激波演化过程,深入探讨其物理机理和动态特性。 本段落探讨了高功率激光束聚焦在固体靶材表面产生的物理现象,并研究了由此引发的空气中激光诱导等离子体激波演化机理。该文章发表于2009年5月的《Chinese Physics B》期刊,作者包括赵瑞等人,他们分别来自南京邮电大学光电流体技术研究中心、南京理工大学应用物理系和光电工程学院。 研究从高功率激光束聚焦在固体靶材表面时引发的一系列现象入手。当激光能量被材料吸收后,导致其熔化蒸发,并形成高温高压的等离子体区域,在此过程中产生冲击波进入周围空气当中。 研究人员提出了一种理论模型来描述空气中由激光诱导产生的等离子体激波演化机制。为了验证该理论的有效性,作者使用了光学束偏转技术跟踪等离子体激波的发展过程。结果表明,实验数据与理论预测高度一致。此外,研究揭示出激光诱导的等离子体激波会经历形成、增长和衰减的过程,并且这些变化是由压缩波和稀疏波相互作用的结果。 文章还展示了利用光学束偏转技术测量得到的速度和压力分布图来表示在空气中的传播特性。基于点源能量释放瞬时性的假设,研究者进一步发展了传统的冲击波模型以描述等离子体激波衰减过程的机制。当激光脉冲停止后,产生的冲击波会迅速减弱为局部声波。 这项工作不仅丰富了高功率激光物理领域的知识库,也为其他相关领域如等离子体物理学和流体力学提供了新的见解。通过结合理论分析与实验验证的方法,研究人员对空气中由激光诱导的等离子体激波传播机制有了更深入的理解,这为进一步探索和应用该现象打开了新途径。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本研究聚焦于空气中由激光激发产生的等离子体及其激波演化过程,深入探讨其物理机理和动态特性。 本段落探讨了高功率激光束聚焦在固体靶材表面产生的物理现象,并研究了由此引发的空气中激光诱导等离子体激波演化机理。该文章发表于2009年5月的《Chinese Physics B》期刊,作者包括赵瑞等人,他们分别来自南京邮电大学光电流体技术研究中心、南京理工大学应用物理系和光电工程学院。 研究从高功率激光束聚焦在固体靶材表面时引发的一系列现象入手。当激光能量被材料吸收后,导致其熔化蒸发,并形成高温高压的等离子体区域,在此过程中产生冲击波进入周围空气当中。 研究人员提出了一种理论模型来描述空气中由激光诱导产生的等离子体激波演化机制。为了验证该理论的有效性,作者使用了光学束偏转技术跟踪等离子体激波的发展过程。结果表明,实验数据与理论预测高度一致。此外,研究揭示出激光诱导的等离子体激波会经历形成、增长和衰减的过程,并且这些变化是由压缩波和稀疏波相互作用的结果。 文章还展示了利用光学束偏转技术测量得到的速度和压力分布图来表示在空气中的传播特性。基于点源能量释放瞬时性的假设,研究者进一步发展了传统的冲击波模型以描述等离子体激波衰减过程的机制。当激光脉冲停止后,产生的冲击波会迅速减弱为局部声波。 这项工作不仅丰富了高功率激光物理领域的知识库,也为其他相关领域如等离子体物理学和流体力学提供了新的见解。通过结合理论分析与实验验证的方法,研究人员对空气中由激光诱导的等离子体激波传播机制有了更深入的理解,这为进一步探索和应用该现象打开了新途径。
  • 诱导冲击化过程
    优质
    本研究探讨了激光照射物质时产生的等离子体中冲击波的发展与演变规律,分析其物理机制和影响因素。 我们进行了一项关于激光诱导等离子体屏蔽冲击波演化过程的研究。通过使用光学阴影成像诊断技术,分析了纳秒激光透过玻璃聚焦在铝靶表面后产生的等离子体与冲击波的碰撞时间及空间演化的具体细节。研究发现,随着玻璃和铝靶之间距离的增长,两者的撞击时间也随之增加。 我们的研究结果表明,在两个冲击波相互碰撞时,并不会直接产生互相作用;而是由等离子体与其中一个或多个冲击波发生作用,导致了它们前方的形状出现畸变甚至破碎的现象,这揭示了一个重要的物理现象——即存在一个由等离子体屏蔽冲击波的过程。最后我们还探讨并分析了这一过程背后的物理机制。
  • 加工诱导学分析
    优质
    本研究聚焦于激光加工过程中的激光诱导等离子体现象,通过先进的光学技术对其进行深入分析,以期揭示其物理机制并优化激光制造工艺。 利用Q-开关Nd:YAG激光器产生的1.06毫米、140纳秒的脉冲激光聚焦在空气中的石英靶上,采集了由该过程引发的石英等离子体发射光谱。研究中,在室温大气压条件下使用高速摄影机对激光加工过程中伴随生成的等离子体动态变化进行了监测和分析。基于局部热力学平衡条件(LET)近似,估算出了等离子体电子平均温度随时间的变化规律。此外,还观察到在室温下利用等离子体制备石英微通道时,其性质发生变化的关键时间为1000毫秒和400毫秒。影响加工质量的因素可能包括通道内部的压力值。
  • 关于研究
    优质
    本研究聚焦于探索激光与等离子体相互作用的前沿领域,涵盖高强度激光场下的粒子加速、高能辐射产生及新型诊断技术,旨在推动相关理论和技术的发展。 当强激光束照射到物质上时,会产生蒸发、电离现象,并形成等离子体。在合适的实验条件下,可以生成一种完全电离的纯净等离子体,其中不含中性原子且没有动量或杂质。通过使用高能量密度的激光快速注入大量能量,可以使热核聚变反应发生并产生中子。此外,在磁场中的任意位置提供这种等离子体环境也适合于研究磁约束下的等离子体稳定性。 基于这些特点,激光等离子体的研究被认为是一个与可控热核聚变装置开发紧密相关的有前景的新领域。目前世界各国都在积极开展相关研究,并且这一趋势预计会越来越明显。
  • 诱导加热
    优质
    激光诱导的等离子体加热研究了高强度激光与物质相互作用时产生的高温等离子体,探讨其在材料加工、核聚变能源及基础物理研究中的应用。 激光加热等离子体是一项高科技领域,利用高能量密度的激光束来激发其中的热核反应。等离子体是一种由自由电子和带正电荷的原子核组成的物质状态,在极高温度下能够发生核聚变反应,类似于太阳产生能量的过程。 苏修列别捷夫物理研究所的研究人员通过使用强激光辐射创造了高温条件,并成功记录了氘等离子体发射出的中子。这项实验的关键知识点包括: 1. 等离子体与激光加热:在高能辐射如激光的作用下,可以进一步将等离子体加热到极高的温度。在这种条件下,原子核能够克服库仑势垒发生聚变反应。 2. 热核反应和中子发射:高温下的氘核相互碰撞并聚变成氦核,并释放出能量巨大的中子。这一现象是热核研究的核心内容之一,而其中产生的高能中子则是直接证据。 3. 超短脉冲激光器与功率:文中提及的超矩脉冲激光器能够产生10^12瓦特级别的极短时间内(约10^-11秒)的能量输出。这种技术是加热等离子体并引发聚变反应的关键之一。 4. 光量子放大器使用:为了增加单个短脉冲能量,光量子放大器将激光脉冲提升至20焦耳的水平,这通常远高于普通条件下的值。 5. 激光控制技术:实验中利用克尔电光开关来精确发射和调控超短脉冲。这种精密的技术有助于确保加热等离子体时的能量准确度。 6. 中子探测设备:包括电子计数器、闪烁计数器在内的多种仪器被用来记录高能中子的事件,并通过光电倍增管将这些信号转化为电信号进行检测分析。 7. 放电器设计和聚焦技术:文中描述了放电器的设计以及激光如何经过透镜聚焦在电极之间,以产生等离子体。这种精确性对于实验的成功至关重要。 8. 高温等离子体研究前景:通过大功率的激光加热来实现高温条件是控制热核聚变反应的一条途径,有望为清洁能源生产提供新的解决方案。 这项技术涉及物理学、材料学和高能物理等多个学科领域,并且科学家们正努力探索如何利用该方法有效控制并应用热核聚变。
  • 电磁场MATLAB仿真代码-Elpse:仿真
    优质
    电磁场MATLAB仿真代码-Eclipse(应为Elpse,可能是笔误)是一款专为激光等离子体相互作用研究设计的专业软件工具。该程序能够实现复杂电磁场的高精度数值模拟,助力科研人员深入探究相关物理机制及应用前景。 注意:原标题中Eclipse可能是一个输入错误,正确拼写应是“Elpse”。如果Eclipse不是笔误而是特有名词,请告知具体含义 “Eikonal激光-等离子体仿真环境”是由一系列Matlab函数组成的工具集,用于研究在等离子体中传播的强电磁波特性。 与基于波的方法不同,“Eikonal 激光-等离子体仿真环境”采用射线跟踪或几何光学技术,并结合相关方法来解决射线跟踪过程中出现的问题(如焦散形成、模式转换、共振和参数化)。这项工具主要为惯性约束融合研究领域的研究人员设计。 入门 目前,该代码由一系列Matlab脚本和函数组成。您可以通过执行“Scripts”目录中的某些脚本来获取一些基本概念。 先决条件 当前版本的Matlab即可满足使用需求。 作者 杰森·迈亚特(Jason Myatt) 史蒂文·广中(Steven Hironaka) 执照 此项目已根据GNU Affero通用公共许可证v3.0获得许可。 致谢 Janukan Sivajeyan和James Wang在2019年夏季的贡献。
  • 基于Comsol脉冲诱导仿真模型研究 在氩下利用脉冲生成,并着重分析其密度...
    优质
    本研究采用COMSOL软件,在氩气环境中通过脉冲激光产生等离子体,深入探讨了其密度分布与演化规律。 在氩气环境中使用脉冲激光作为热源来诱导产生等离子体,并主要展示出等离子体的密度、温度等相关参数。该模型能够为研究激光诱导产生的等离子体提供准确的数据参考。
  • 基于COMSOL模拟热致效应研究
    优质
    本研究运用COMSOL多物理场仿真软件,探讨了激光与材料相互作用产生的热致等离子体效应,分析其在不同条件下的行为和特性。 COMSOL是一款强大的多物理场仿真软件,在工程、物理等领域有着广泛的应用与教学价值。尤其在模拟激光与物质相互作用方面表现突出,其中探究激光热致等离子体的作用模型具有重要的理论及实用意义。当材料受到高功率激光照射时,其表面或内部温度急剧上升,并导致电离形成等离子体的现象被称为激光热致等离子体效应。这种现象在诸如激光加工、推进和医疗等领域中有着广泛的应用。 利用COMSOL进行研究时,研究人员能够通过建立适当的物理场模型来探索激光热致等离子体的生成过程及其演化规律,并分析其与材料之间的相互作用。这通常涉及到了解光束传播、热量传递以及物质反应等多个方面的物理现象。仿真模拟有助于深入理解上述机制并为实验设计提供理论支持。 从文件名列表可以看出,相关研究包括了激光热致等离子体模型的多个方面,例如引言、技术文章摘要及更深层次解析等内容。这些内容覆盖了基础理论至应用技术和深度探究的不同层面,为从事该领域科研工作的人员提供了丰富的参考资料。 比如,“标题:通过模拟探索激光热致等离子”可能探讨了仿真技术在研究中的作用;“关于特定模型的技术文章”则详细介绍了某个或某些具体模型的构建过程。“科技博文引言介绍激光热致等离子体建模在科技领域的作用”,以博客形式初步阐述了该主题的应用前景。还有诸如“深入解析模拟激光热致等离子体模型”的文件,可能更专注于具体的案例分析和应用实例展示。 另外,“论文题目:研究摘要——关于激光热致等离子体模型”及类似标题的文档中,作者们会详细说明他们的研究动机、目标、方法、预期成果以及实际意义。而“从模拟探寻激光与热致等离子体交互作用的深度之旅摘录”,则可能更多地关注理论探讨和仿真分析。 最后,“科技发展中的激光热致等离子体模型详解”文件可能会提供对构建过程及仿真流程的全面解释,这对于理解和利用该模型至关重要。这些文档为COMSOL在模拟激光热致等离子体方面提供了深入的研究视角,并涵盖了从建模到应用实践等多个层面的内容,对于相关领域的研究具有重要的参考价值。
  • 雷达监测
    优质
    激光雷达环境监测是一种利用高精度激光技术进行大气和地面环境观测的方法。它能够提供三维空间数据,广泛应用于空气质量、气候变化及地形测绘等领域,为环境保护与科学研究提供了强有力的工具和技术支持。 《环境监测激光雷达》是该领域的权威书籍,详细介绍了激光雷达的测量原理、结构以及数据反演过程,适合入门人员和研究人员参考使用。
  • 不同类型器结构示意图(含CO2、固、氦氖及
    优质
    本图集展示了多种类型激光器的内部构造,包括二氧化碳(CO2)、固体、氦氖和其它气体激光器,以直观的方式揭示了它们的工作原理与特点。 激光器是一种高科技设备,用于产生具有高度定向性和单色性的光束,在IT行业中应用广泛,尤其是在数据存储、通信、精密加工和光学传感等领域。以下将详细阐述CO2激光器、固体激光器、氦氖激光器以及气体激光器的结构及其工作原理。 **1. CO2 激光器:** CO2 激光器是一种气体激光器,主要由二氧化碳(CO2)、氮气(N₂)和氦气(He)等混合气体组成。其工作介质位于两个反射镜之间形成一个光学谐振腔。当电流通过这些混合气体时,电子与气体分子相互作用导致激发并释放出激光。这种类型的激光器通常产生红外光,并且功率较高,适用于材料切割和焊接。 **2. 固体激光器:** 固体激光器的活性介质是固态晶体或玻璃,例如掺钕钇铝石榴石(Nd:YAG)或者含稀土元素的玻璃。这些设备的工作原理始于泵浦源(如灯或二极管)向固体介质注入能量,使某些原子或离子跃迁到高能级状态。当这些粒子返回低能级时会发射激光。反射镜用于构建谐振腔以促进激光放大过程。固体激光器能够产生连续波或者脉冲形式的光束,并且适用于诸如激光雷达、医学手术以及精密打标等应用。 **3. 氦氖激光器:** 氦氖激光器是最常见的气体类型之一,其工作介质由氦和氖两种元素组成的混合气体构成。当高压电流通过该气态组合时,氦原子协助激发氖原子,在后者返回基态的过程中发射出激光信号。这种类型的设备产生的光多为红色,并且功率较低但稳定性较好;因此常用于教学实验、光学定位以及光刻技术等领域。 **4. 气体激光器:** 气体激光器涵盖多种类型,如氦镉(HeCd)和氩离子等装置。它们的工作机制与氦氖类似,通过电场作用激发特定气体分子并释放出相干的光子流。不同种类的气态激光设备可覆盖从紫外线到红外线的不同波长范围,并广泛应用于科学研究、医学治疗以及工业制造等多个领域。 以上四种类型的激光器都基于受激辐射放大原理运作:即通过某种方式使工作介质中的激发态粒子数量超过基态,从而在这些粒子返回低能级时同步释放出相位和频率一致的光子形成激光。由于不同种类激光器的工作物质及激励机制存在差异,它们各自展现出独特的性能特点以及适用场景。