
基于FPGA的全数字延时锁相环设计
5星
- 浏览量: 0
- 大小:None
- 文件类型:None
简介:
本项目聚焦于利用FPGA技术实现全数字延时锁相环的设计与优化,旨在提升信号同步精度和系统灵活性。
现场可编程门阵列(FPGA)的发展已有二十多年历史,从最初的1200个逻辑单元发展到如今数百万乃至千万级的单片芯片规模。目前,FPGA已被广泛应用于通信、消费电子以及汽车电子产品等多个领域。然而,在国内市场中,主要被国外品牌占据主导地位。在高密度FPGA设计中,时钟分布的质量变得越来越重要,而时钟延迟和偏差已成为影响系统性能的关键因素。
为了减小这些不利影响,目前主要有两种方法:利用延时锁相环(DLL)或锁相环(PLL)。这两种技术又可以细分为数字实现与模拟实现。尽管采用模拟方式的DLL所需芯片面积较小且输出时钟精度更高,但从功耗、锁定时间、设计复杂性及可重用性的角度来看,我们更倾向于使用数字方法来构建。
本段落基于Xilinx公司Virtex-E系列FPGA平台进行研究,并对全数字延时锁相环(DLL)电路进行了深入分析与设计。在此基础上开发了具有自主知识产权的模块化电路。作者经过一年多的努力,在整体功能解析、逻辑电路设计、晶体管级设计及仿真等多个环节上做了大量工作,最终成功构建出符合性能指标要求的全数字DLL模块,并为实现自有的FPGA技术打下了坚实基础。
本段落首先概述了FPGA及其时钟管理技术的发展历程,接着深入探讨并对比分析了DLL与PLL两种方法的优势和劣势。随后详细介绍了DLL模块及各组成部分的工作原理以及设计考量因素,提出了完整的全数字DLL架构方案,并通过整体仿真验证其功能性和参数指标的准确性。
在设计过程中,使用Verilog-XL对部分电路进行数字仿真测试,并利用Spectre软件完成模拟仿真实验;整个系统级的仿真则采用HSIM工具。本研究基于TSMC 0.18μm CMOS工艺库模型构建而成,所开发出的DLL模块支持25MHz至400MHz的工作频率范围、1.8V供电电压及-55℃到+125℃的操作温度区间;最大抖动时间为28ps,在输入时钟为100MHz的情况下耗电量仅为200μW,达到了国际同类产品水平。此外还完成了输出电路的设计,具备调节占空比、倍频以及多种分频功能的时钟频率合成能力。
全部评论 (0)


