Advertisement

常用的运算放大器电路图 常用的运算放大器电路图

  •  5星
  •     浏览量: 0
  •     大小:None
  •      文件类型:PDF


简介:
本资料汇集了多种常用的运算放大器电路图,包括但不限于跟随器、比较器、加法器等。每种电路图都附有详细的参数说明和应用示例,旨在帮助电子工程师快速理解和设计复杂的模拟系统。 本段落将详细介绍几种常见的运算放大器(简称“运放”)电路图及其应用。这些内容来自National Semiconductor公司的应用笔记AN-31,发布于1978年。文档中的电路图覆盖了运放的基础应用,包括放大、求和、积分、微分等多种功能。 ### 一、反相放大器 反相放大器是运放最常见的配置之一,它通过两个电阻R1和R2来实现信号的放大。其输出电压与输入电压相位相反。电路公式如下: \[ V_{OUT} = -\frac{R_2}{R_1} \cdot V_{IN} \] 其中 \(V_{IN}\) 是输入电压,\(V_{OUT}\) 是输出电压。 ### 二、同相放大器 与反相放大器相似,但输出电压与输入电压相位相同。电路结构如下: \[ V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \cdot V_{IN} \] 这里同样使用了两个电阻R1和R2。 ### 三、差分放大器 差分放大器可以放大两个输入信号之间的差值。电路公式如下: \[ V_{OUT} = \frac{R_2}{R_1} \cdot (V_2 - V_1) \] 当 \( R_1=R_3\) 且 \(R_2=R4\)时,计算简化。 ### 四、反相求和放大器 反相求和放大器能够将多个输入信号相加并进行放大。电路公式如下: \[ V_{OUT} = -\frac{R_4}{R_1} \cdot (V_1 + V_2 + V_3) \] 每个输入电压通过一个电阻连接到运放的反相输入端。 ### 五、同相求和放大器 该电路同样可以将多个输入信号相加,但输出电压与输入电压相位相同。公式如下: \[ V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \cdot (V_1 + V_2 + V_3) \] ### 六、高输入阻抗反相放大器 为了提高输入阻抗,可以采用特殊的电路设计。公式如下: \[ V_{OUT} = -\frac{R_2}{R_1} \cdot V_{IN} \] 这里的关键在于选择合适的源阻抗。 ### 七、高速高输入阻抗反相放大器 在需要高速响应的同时保持高输入阻抗的情况下,可以采用以下电路设计: \[ V_{OUT} = -\frac{R_2}{R_1} \cdot V_{IN} \] 这种设计特别适用于对速度有较高要求的应用场景。 ### 八、同相交流放大器 主要用于处理交流信号。公式如下: \[ V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \cdot V_{IN} \] 为了提高输入阻抗,可在输入端增加一个额外的电阻。 ### 九、实用型微分器 可以将输入信号的导数转换成输出电压。带宽由 \( R_2\) 和 \( C_1\) 决定: \[ f_c = \frac{1}{2\pi R_2C_1} \] 此外,还需要考虑偏置电流的影响。 ### 十、积分器 能够将输入信号积分,并将其转换为输出电压。公式如下: \[ V_{OUT} = -\int_{t_1}^{t_2}\frac{V_IN}{R_1 C_1 } dt \] 带宽由 \( R_1\) 和 \( C_1\) 决定。 ### 十一、电流到电压转换器 可以将输入电流转换成相应的输出电压。公式如下: \[ V_{OUT} = I_{IN} \cdot R_1 \] 为了减少偏置电流的影响,通常需要选择适当的 \(R_2\) 值。 以上介绍了几种常见的运放电路及其工作原理。这些基本电路是电子工程师必须掌握的基础知识,对于设计更复杂的系统具有重要意义。通过合理选择电阻值和电容值,可以有效地控制电路的增益、带宽以及稳定性,从而满足不同的应用场景需求。

全部评论 (0)

还没有任何评论哟~
客服
客服
  • 优质
    本资料汇集了多种常用的运算放大器电路图,包括但不限于跟随器、比较器、加法器等。每种电路图都附有详细的参数说明和应用示例,旨在帮助电子工程师快速理解和设计复杂的模拟系统。 本段落将详细介绍几种常见的运算放大器(简称“运放”)电路图及其应用。这些内容来自National Semiconductor公司的应用笔记AN-31,发布于1978年。文档中的电路图覆盖了运放的基础应用,包括放大、求和、积分、微分等多种功能。 ### 一、反相放大器 反相放大器是运放最常见的配置之一,它通过两个电阻R1和R2来实现信号的放大。其输出电压与输入电压相位相反。电路公式如下: \[ V_{OUT} = -\frac{R_2}{R_1} \cdot V_{IN} \] 其中 \(V_{IN}\) 是输入电压,\(V_{OUT}\) 是输出电压。 ### 二、同相放大器 与反相放大器相似,但输出电压与输入电压相位相同。电路结构如下: \[ V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \cdot V_{IN} \] 这里同样使用了两个电阻R1和R2。 ### 三、差分放大器 差分放大器可以放大两个输入信号之间的差值。电路公式如下: \[ V_{OUT} = \frac{R_2}{R_1} \cdot (V_2 - V_1) \] 当 \( R_1=R_3\) 且 \(R_2=R4\)时,计算简化。 ### 四、反相求和放大器 反相求和放大器能够将多个输入信号相加并进行放大。电路公式如下: \[ V_{OUT} = -\frac{R_4}{R_1} \cdot (V_1 + V_2 + V_3) \] 每个输入电压通过一个电阻连接到运放的反相输入端。 ### 五、同相求和放大器 该电路同样可以将多个输入信号相加,但输出电压与输入电压相位相同。公式如下: \[ V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \cdot (V_1 + V_2 + V_3) \] ### 六、高输入阻抗反相放大器 为了提高输入阻抗,可以采用特殊的电路设计。公式如下: \[ V_{OUT} = -\frac{R_2}{R_1} \cdot V_{IN} \] 这里的关键在于选择合适的源阻抗。 ### 七、高速高输入阻抗反相放大器 在需要高速响应的同时保持高输入阻抗的情况下,可以采用以下电路设计: \[ V_{OUT} = -\frac{R_2}{R_1} \cdot V_{IN} \] 这种设计特别适用于对速度有较高要求的应用场景。 ### 八、同相交流放大器 主要用于处理交流信号。公式如下: \[ V_{OUT} = \left(1 + \frac{R_2}{R_1}\right) \cdot V_{IN} \] 为了提高输入阻抗,可在输入端增加一个额外的电阻。 ### 九、实用型微分器 可以将输入信号的导数转换成输出电压。带宽由 \( R_2\) 和 \( C_1\) 决定: \[ f_c = \frac{1}{2\pi R_2C_1} \] 此外,还需要考虑偏置电流的影响。 ### 十、积分器 能够将输入信号积分,并将其转换为输出电压。公式如下: \[ V_{OUT} = -\int_{t_1}^{t_2}\frac{V_IN}{R_1 C_1 } dt \] 带宽由 \( R_1\) 和 \( C_1\) 决定。 ### 十一、电流到电压转换器 可以将输入电流转换成相应的输出电压。公式如下: \[ V_{OUT} = I_{IN} \cdot R_1 \] 为了减少偏置电流的影响,通常需要选择适当的 \(R_2\) 值。 以上介绍了几种常见的运放电路及其工作原理。这些基本电路是电子工程师必须掌握的基础知识,对于设计更复杂的系统具有重要意义。通过合理选择电阻值和电容值,可以有效地控制电路的增益、带宽以及稳定性,从而满足不同的应用场景需求。
  • 两级仿真_town1de_valuebg1___
    优质
    本资源提供一个详细的两级运算放大器电路仿真图,展示其内部结构和工作原理。适用于学习和研究运算放大器设计与应用的工程师及学生。 Inverted T Resistance Network Digital-to-Analog Converter Circuit
  • .zip
    优质
    该文件包含多种运算放大器的经典应用电路图,如跟随器、反相放大器及仪表放大器等,适用于学习和设计模拟电子线路。 Multisim模拟电子技术基础运算放大电路仿真:包括反向比例放大电路、积分电路、加法运算放大电路、同相比例放大电路、微分电路。
  • AD620PCB
    优质
    本资源提供AD620运算放大器的详细PCB电路图,帮助电子工程师和爱好者深入了解其应用与设计原理。 我们成功设计了一款仪器的仪表放大电路,并已将其应用到实际项目中。该设计采用了SMA头进行信号传输。
  • 优质
    《运算放大器电路大全》是一本全面介绍运算放大器应用与设计的手册,涵盖多种经典及创新电路实例。 运放电路大全运放电路大全运放电路大全运放电路大全运放电路大全
  • LM324
    优质
    本书全面解析了LM324运算放大器的应用电路,涵盖信号处理、测量及驱动等领域,为工程师和电子爱好者提供详实的设计参考。 LM324是一款四运放集成电路,采用14脚双列直插塑料封装。其内部包含四个完全相同的运算放大器模块,在共用电源的情况下彼此独立工作。每个运算放大器可以用图示符号表示,并有五个引出端:两个信号输入端(“+”和“-”),正负电源端(“V+”、“V-”)以及输出端(“Vo”。其中,“Vi-(-)”为反相输入端,意味着运放的输出信号与该输入信号相反;而“Vi+(+)”是同相输入端,则表示运放的输出信号与其一致。LM324的具体引脚排列如图所示。
  • 包含6个模块
    优质
    本文章详细介绍了由六个独立放大电路组成的常用运算放大器电路的设计与应用,深入探讨了每个模块的功能及相互作用。 该设计包含两个放大电路,两个正向加法电路,一个反向加法电路以及一个减法电路。所有这些都已制作成现成的PCB板,并可以直接使用。
  • 设计
    优质
    《运算放大器电路设计》一书深入探讨了如何利用运算放大器构建各种模拟电路,涵盖基础理论与实际应用技巧。 《OP放大电路设计》是“实用电子电路设计丛书”之一。本书内容分为基础部分(1~5章)和应用部分(6~9章)。前者主要介绍运算放大器的零点、漂移及噪声,增益与相位,相位补偿及技巧,运算放大器的选择和系统设计;后者则涵盖反相放大器、正向放大器以及差动放大的应用场景,并探讨了运算放大器在恒压、恒流电路中的应用及其在微分、积分电路中的作用。此外还涉及非线性元件的应用以及比较放大器的相关内容。